scholarly journals Virus surveys of process vegetable crops pea beetroot and dwarf bean

2016 ◽  
Vol 69 ◽  
pp. 320-320
Author(s):  
J.D. Fletcher ◽  
H. Ziebell

In a survey of 14 processing crops and 7 pea seed crops throughout Canterbury Cucumber mosaic virus (CMV) was the most widespread with crop incidences of up to 20 Alfalfa mosaic virus (AMV) up to 11 Pea seedborne mosaic virus (PSbMV) up to 9 Soybean dwarf virus (SDV) up to 2 Turnip yellows virus (TuYV) up to 2 and Bean yellow mosaic virus (BYMV) up to 35 Red clover vein mosaic virus (RCVMV) was detected in peas for the first time in New Zealand with incidences of up to 35 Pea necrotic yellow dwarf virus (PNYDV) Faba bean necrotic yellows virus (FBNYV) and Broad bean stain virus (BBSV) were not detected In a survey of 8 beetroot crops TuYV was detected in Auckland at 1 incidence but not in Hawkes Bay Beet mosaic virus was detected at 1 incidence in both regions Fungal leaf spotting pathogens appear a greater concern in beetroot In 12 dwarf bean processing crops throughout Canterbury virus was only detected in early sown crops AMV and RCVMV were most widespread with incidences of up to 9; CMV with up to 7 incidence; then BYMV TuYV and SDV each with 1 incidence No Bean common mosaic virus was detected

Plant Disease ◽  
1997 ◽  
Vol 81 (7) ◽  
pp. 817-820 ◽  
Author(s):  
Robert T. Sherwood

Incidence of six viruses was tested in white clover from 28 rotationally grazed pastures of Pennsylvania (PA), New York (NY), and Vermont (VT). Each of 17 PA pastures was sampled fall 1994, spring 1995, fall 1995, and spring 1996, and 10 pastures were sampled fall 1996. Each of five NY and six VT pastures was sampled spring and fall 1995 and 1996. Enzyme-linked immunosorbent assays (ELISA) were conducted for red clover vein mosaic virus (RCVMV), white clover mosaic virus (WCMV), alfalfa mosaic virus (AlMV), peanut stunt virus (PSV), clover yellow mosaic virus (CYMV), and the potyvirus group (POTY). RCVMV, WCMV, AlMV, and POTY were detected in 28, 28, 27, and 25 of the 28 pastures and in 67, 32, 30, and 7% of the 3,065 samples tested, respectively. PSV occurred at low to moderate levels in 11 PA pastures. PSV was rare in NY and was not detected in VT. CYMV was never found. Incidence of each virus varied significantly among pastures. For any given virus, there was not a significant variation in incidence among sampling dates within the NY-VT samples. RCVMV, WCMV, and POTY varied among dates within PA.


2010 ◽  
Vol 62 (3) ◽  
pp. 595-601 ◽  
Author(s):  
Dragana Petrovic ◽  
Maja Ignjatov ◽  
Zorica Nikolic ◽  
Milka Vujakovic ◽  
Mirjana Vasic ◽  
...  

This work describes the incidence and distribution of the most important bean viruses in Serbia: Bean common mosaic virus (BCMV), Bean common mosaic necrosis virus (BCMNV), Bean yellow mosaic virus (BYMV), Cucumber mosaic virus (CMV) and Alfalfa mosaic virus (AMV). The viral isolates were characterized serologically and biologically. BCMV was found in the largest number of plants (30.53%), followed by BCMNV (2.67%), CMV (5.34%), and AMV (3.41%), since BYMV was not determined. Mixed viral infections were found in several samples. The RT-PCR method was used to prove that the tested isolates belong to the BCMV, family Potyviridae and strains Russian and NL-3 D. Results obtained in this work will enable further studies of the genetic variability of bean virus isolates from Serbia. .


2014 ◽  
Vol 50 (No. 3) ◽  
pp. 113-118 ◽  
Author(s):  
J. Fránová ◽  
H. Jakešová

Seedlings of Trifolium pratense L. cultivars were mechanically inoculated with Czech isolates of Alfalfa mosaic virus (AMV), Clover yellow mosaic virus (ClYMV), Clover yellow vein virus (ClYVV), Red clover mottle virus (RCMV), White clover mosaic virus (WClMV), and a newly discovered member of the Cytorhabdovirus genus. WClMV infected 75.4% of clover seedlings; cv. Rezista was the most susceptible (93.3%), while cv. Fresko was the least susceptible (58.3%). RCMV infected 59.6% of plants; the most susceptible was cv. Tempus (77.6%), the least susceptible cv. Sprint (38.3%). While WClMV infected a higher number of seedlings, RCMV revealed more severe symptoms on affected plants. On the basis of ELISA and RT-PCR results, no cultivar was susceptible to mechanical inoculation with ClYMV and cytorhabdovirus. Moreover, cvs Fresko and Sprint were not susceptible to ClYVV and AMV, respectively.


Plant Disease ◽  
2006 ◽  
Vol 90 (7) ◽  
pp. 970-970 ◽  
Author(s):  
M. A. Achon ◽  
L. Serrano ◽  
C. Ratti ◽  
C. Rubies-Autonell

Severe dwarfing, yellowing, and crop failure were observed on barley in northeastern Spain during March and April of 2003. Leaves from 106 plants collected from 15 barley fields were analyzed using enzyme-linked immunosorbent assay (ELISA) with commercial antisera (Loewe Biochemica, Munich) specific for Barley mild mosaic virus (BaMMV), Barley yellow mosaic virus (BaYMV), the PAV and MAV serotypes of Barley yellow dwarf virus (BYDV), Barley yellow striate mosaic virus (BYSMV), Barley stripe mosaic virus (BSMV), Brome mosaic virus (BMV), Brome streak mosaic virus, (BStMV), Cereal yellow dwarf virus (CYDV), Wheat streak mosaic virus (WSMV), Wheat spindle streak mosaic virus (WSSMV), Soilborne cereal mosaic virus (SBCMV), and Wheat dwarf virus (WDV). In 70 samples, BYDV-PAV was the sole virus detected; in 20 other samples, this virus was detected in association with WDV, WSMV, BaMMV, and/or BaYMV. Mixed infections were further analyzed using reverse transcriptase-polymerase chain reaction (RT-PCR) or PCR with specific primers that amplify 445 bp of BaMMV (3), 433 bp of BaYMV (1), 600 bp of WSMV (primer 1: 5′CGAAACGCAGCG TTATTTC3′, primer 2: 5′CATCTGAAG GGCTTGACG3′), and 1,200 bp of WDV (4). Eight samples gave the expected amplicons for WDV, two samples gave the expected amplicon for BaMMV, and one sample gave the BaMMV and BaYMV amplicons. No samples gave the amplicon for WSMV. In addition, 10 samples that were positive with ELISA for BYDV, either as a single or as multiple infections with other viruses, were analyzed with specific primers that amplify 600 bp of the BYDV genome (2) and all gave the expected RT-PCR product. ELISA and RT-PCR results agreed completely for WDV and BYDV samples, but agreed poorly for BaMMV and BaYMV (three of seven ELISA-positive samples). PCR products of WDV were subsequently cloned and sequenced. Sequence analysis confirmed the presence of WDV in these barley samples. This report shows the high occurrence of BYDV in barley fields and its association with BaMMV, BaYMV, and WDV infections that induces barley crop failure. To our knowledge, this is the first detection of WDV in Spain. References: (1) M. A. Achon et al. Plant Dis.87:1004, 2003. (2). E. S. G. Canning et al. J. Virol. Methods 56:191, 1996. (3) D. Hariri et al. Eur. J. Plant Pathol. 106:365, 2000. (4) A. Kvarnheden et al. Arch Virol. 147:206, 2002.


2020 ◽  
Vol 82 (6) ◽  
pp. 94-106
Author(s):  
A.N. Kyrychenko ◽  
◽  
M.M. Bohdan ◽  
I.S. Shcherbatenko ◽  
◽  
...  

This paper is the review of literature data on the prevalence of weeds as possible reservoirs of plant viruses in agroecosystems of Ukraine. The information presented here about the most distributed weeds as reservoirs of harmful plant viruses will be useful for understanding the pathogens ecology, analyzing the virus epidemiology and for disease management. Since legumes are the main crops grown in Ukraine, the paper focuses on weeds spreading in the agrosystems of cultivated plant. The paper provides information about the primary sources of soybean viruses (Soybean mosaic virus, Cucumber mosaic virus, Alfalfa mosaic virus, Tomato ringspot virus) and bean viruses (Bean yellow mosaic virus, Bean common mosaic virus) as well as the main factors contributing the virus transmission in agrocenosis.


2009 ◽  
Vol 10 (1) ◽  
pp. 14 ◽  
Author(s):  
Mary Burrows ◽  
Gary Franc ◽  
Charlie Rush ◽  
Tamla Blunt ◽  
Dai Ito ◽  
...  

Field surveys in 2008 determined the prevalence and diversity of viruses present in the Great Plains wheat crops. Symptomatic plants (n = 754) in nine states were tested for Wheat streak mosaic virus (WSMV), Wheat mosaic virus (WMoV, formerly known as High Plains virus), Triticum mosaic virus (TriMV), Barley yellow dwarf virus-PAV (BYDV-PAV), and Cereal yellow dwarf virus-RPV (CYDV-RPV), using indirect ELISA. Virus prevalence varied greatly, with average frequency of detection highest for WSMV (47%), followed by WMoV (19%), TriMV (17%), BYDV-PAV (7%), and lowest for CYDV-RPV (2%). Most positive plant samples (37%) had one virus present, with decreasing frequencies for co-infection by two (19%), three (5%), or four viruses (1%). TriMV was detected for the first time in Colorado, Nebraska, Oklahoma, South Dakota, Texas, and Wyoming. WMoV was identified for the first time in Montana and Wyoming. Chlorotic streaks were more frequently associated with WSMV, WMoV, and TriMV (R = 0.166 to 0.342; P < 0.05), and stunting was more frequently associated with WMoV (R = 0.142; P = 0.004) or TriMV (R = 0.107; P = 0.033) than WSMV. Symptom severity did not increase with co-infection as compared to single virus infections, with the exception of plants co-infected with mite transmitted viruses in Texas. Accepted for publication 1 May 2009. Published 6 July 2009.


2014 ◽  
Vol 65 (9) ◽  
pp. 841 ◽  
Author(s):  
P. L. Guy

This article reviews knowledge of 23 plant viruses infecting pasture grasses and legumes in New Zealand. The incidence, ecology and impact of each virus and prospects for control using natural or artificial resistance genes or by vector control is discussed. The most prevalent viruses are Alfalfa mosaic virus and White clover mosaic virus in pasture legumes and Cocksfoot mottle virus, Ryegrass mosaic virus and Barley yellow dwarf virus in pasture grasses. Lucerne Australian latent virus is restricted to the North Island and Red clover necrotic mosaic virus is largely restricted to the South Island. These patterns are likely to be dynamic with ongoing changes in weather patterns, land use, the spread of insect vectors and the continuing introduction of viruses and vectors. The existing and potential threats to 12 pasture species are tabulated and the knowledge gaps for each species highlighted. Control of vectors including aphids, eriophyid mites and soil-borne fungi is probably not economic per se but could be an additional benefit of integrated pest management in pasture and cropping systems. The most cost-effective and practical preventative measures are likely to be the use of virus-tested seed to establish new pastures and the incorporation of resistance genes by conventional breeding or by genetic engineering. Finally, recommendations are made for future research for New Zealand, which is also relevant to other temperate regions of the world.


Pathogens ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 4 ◽  
Author(s):  
Fatma Hussein Kiruwa ◽  
Samuel Mutiga ◽  
Joyce Njuguna ◽  
Eunice Machuka ◽  
Senait Senay ◽  
...  

Sustainable control of plant diseases requires a good understanding of the epidemiological aspects such as the biology of the causal pathogens. In the current study, we used RT-PCR and Next Generation Sequencing (NGS) to contribute to the characterization of maize lethal necrotic (MLN) viruses and to identify other possible viruses that could represent a future threat in maize production in Tanzania. RT-PCR screening for Maize Chlorotic Mottle Virus (MCMV) detected the virus in the majority (97%) of the samples (n = 223). Analysis of a subset (n = 48) of the samples using NGS-Illumina Miseq detected MCMV and Sugarcane Mosaic Virus (SCMV) at a co-infection of 62%. The analysis further detected Maize streak virus with an 8% incidence in samples where MCMV and SCMV were also detected. In addition, signatures of Maize dwarf mosaic virus, Sorghum mosaic virus, Maize yellow dwarf virus-RMV and Barley yellow dwarf virus were detected with low coverage. Phylogenetic analysis of the viral coat protein showed that isolates of MCMV and SCMV were similar to those previously reported in East Africa and Hebei, China. Besides characterization, we used farmers’ interviews and direct field observations to give insights into MLN status in different agro-ecological zones (AEZs) in Kilimanjaro, Mayara, and Arusha. Through the survey, we showed that the prevalence of MLN differed across regions (P = 0.0012) and villages (P < 0.0001) but not across AEZs (P > 0.05). The study shows changing MLN dynamics in Tanzania and emphasizes the need for regional scientists to utilize farmers’ awareness in managing the disease.


Sign in / Sign up

Export Citation Format

Share Document