Modelling and Validation of 3D FEM for Laterally Loaded Single

Author(s):  
Yee Wong Soon ◽  
◽  
Ti Kok Sien ◽  
Kang Choong Wee ◽  
Abdullahi Ali Mohamed ◽  
...  
Keyword(s):  
3D Fem ◽  
2018 ◽  
Vol 100 ◽  
pp. 76-83 ◽  
Author(s):  
Gerry Murphy ◽  
David Igoe ◽  
P. Doherty ◽  
K. Gavin
Keyword(s):  
3D Fem ◽  

Author(s):  
Matt Bristow

A new analytical method is presented to determine the effects of cyclic loading on laterally loaded piles. The method uses a new numerical procedure to quantify the effects of the cyclic loading at each soil depth and convert that to a set of cyclic p-y modifiers. The reduced foundation stiffness associated with the cyclic loading can be determined, including the residual static capacity and an estimate of the accumulated displacement. The new method introduces the concept of cyclic degradation damage, which is defined as sum of the cyclic degradation that is occurring at each soil depth. Cyclic degradation calculations are based on the shear stresses in the soil. Consequently, anything that causes the shear stresses to change (e.g. pile length, pile diameter, applied loading, etc.) will automatically be included in the calculation of cyclic p-y modifiers. The method has been validated by comparing the cyclic p-y curves produced using the new method with established cyclic p-y curves derived from fielding testing. The new method has also been used to investigate what happens to the cyclic p-y modifiers as one moves away from the reference conditions used to determine the established cyclic p-y curves in API RP2A (2000). The new method shows that every application (e.g. combination of cyclic loading, pile properties, and soil characteristics) has its own unique set of cyclic p-y curves, though most p-y curves fit within an upper and lower bound range. Examples are provided for large diameter monopiles.


2020 ◽  
Vol 11 (1) ◽  
pp. 26
Author(s):  
Muhammad Bilal Adeel ◽  
Muhammad Asad Jan ◽  
Muhammad Aaqib ◽  
Duhee Park

The behavior of laterally loaded pile groups is usually accessed by beam-on-nonlinear-Winkler-foundation (BNWF) approach employing various forms of empirically derived p-y curves and p-multipliers. Averaged p-multiplier for a particular pile group is termed as the group effect parameter. In practice, the p-y curve presented by the American Petroleum Institute (API) is most often utilized for piles in granular soils, although its shortcomings are recognized. In this study, we performed 3D finite element analysis to develop p-multipliers and group effect parameters for 3 × 3 to 5 × 5 vertically squared pile groups. The effect of the ratio of spacing to pile diameter (S/D), number of group piles, varying friction angle (φ), and pile fixity conditions on p-multipliers and group effect parameters are evaluated and quantified. Based on the simulation outcomes, a new functional form to calculate p-multipliers is proposed for pile groups. Extensive comparisons with the experimental measurements reveal that the calculated p-multipliers and group effect parameters are within the recorded range. Comparisons with two design guidelines which do not account for the pile fixity condition demonstrate that they overestimate the p-multipliers for fixed-head condition.


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 569
Author(s):  
Ana Claudia González-Castillo ◽  
José de Jesús Cruz-Rivera ◽  
Mitsuo Osvaldo Ramos-Azpeitia ◽  
Pedro Garnica-González ◽  
Carlos Gamaliel Garay-Reyes ◽  
...  

Computational simulation has become more important in the design of thermomechanical processing since it allows the optimization of associated parameters such as temperature, stresses, strains and phase transformations. This work presents the results of the three-dimensional Finite Element Method (FEM) simulation of the hot rolling process of a medium Mn steel using DEFORM-3D software. Temperature and effective strain distribution in the surface and center of the sheet were analyzed for different rolling passes; also the change in damage factor was evaluated. According to the hot rolling simulation results, experimental hot rolling parameters were established in order to obtain the desired microstructure avoiding the presence of ferrite precipitation during the process. The microstructural characterization of the hot rolled steel was carried out using optical microscopy (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). It was found that the phases present in the steel after hot rolling are austenite and α′-martensite. Additionally, to understand the mechanical behavior, tensile tests were performed and concluded that this new steel can be catalogued in the third automotive generation.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 313
Author(s):  
Marco Sinagra ◽  
Calogero Picone ◽  
Costanza Aricò ◽  
Antonio Pantano ◽  
Tullio Tucciarelli ◽  
...  

Crossflow turbines represent a valuable choice for energy recovery in aqueducts, due to their constructive simplicity and good efficiency under variable head jump conditions. Several experimental and numerical studies concerning the optimal design of crossflow hydraulic turbines have already been proposed, but all of them assume that structural safety is fully compatible with the sought after geometry. We show first, with reference to a specific study case, that the geometry of the most efficient impeller would lead shortly, using blades with a traditional circular profile made with standard material, to their mechanical failure. A methodology for fully coupled fluid dynamic and mechanical optimization of the blade cross-section is then proposed. The methodology assumes a linear variation of the curvature of the blade external surface, along with an iterative use of two-dimensional (2D) computational fluid dynamic (CFD) and 3D structural finite element method (FEM) simulations. The proposed methodology was applied to the design of a power recovery system (PRS) turbine already installed in an operating water transport network and was finally validated with a fully 3D CFD simulation coupled with a 3D FEM structural analysis of the entire impeller.


Author(s):  
Fabiano Bini ◽  
Andrada Pica ◽  
Simone Novelli ◽  
Raffaella Pecci ◽  
Rossella Bedini ◽  
...  

Author(s):  
Nilo Cesar Consoli ◽  
Naiara da Costa Reginato ◽  
Luizmar da Silva Lopes Júnior ◽  
Marcelo Maia Rocha ◽  
Vítor Pereira Faro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document