scholarly journals Influence of Milling Process Parameters on Machined Surface Quality of Carbon Fibre Reinforced Polymer (CFRP) Composites Using Taguchi Analysis and Grey Relational Analysis

Author(s):  
I.S.N.V.R. Prasanth ◽  
◽  
S. Nikitha ◽  
R. Pulsingh ◽  
M. Sampath ◽  
...  

The article presents the milled surface quality of Uni-Directional Carbon Fibre Reinforced Polymer (UD-CFRP) composites from Taguchi’s and grey relational analysis. The novelty is demonstrating the possibility of detecting the surface defects in polymer composites during milling using SEM analysis. The material used for this study is UD-CFRP composite laminates and made by hand-layup process. All the milling operations were carried out using a solid tungsten carbide end milling tool and experiments conducted on CNC milling machine. Taguchi L9, 3-level orthogonal array was considered for experimentation. Analysis of Variance (ANOVA) was conducted to explore the significance of each individual input process parameters on multiple performance characteristics. Optimal process parameters are thoroughly validated by grey relational grade achieved by the grey relational analysis for multi performance characteristics. Finally, experimental results were correlated and analyzed with scanning electron micrographs using Scanning Electron Microscope (SEM).

Author(s):  
Dhiraj Kumar ◽  
Kalyan Kumar Singh

Laser machining of carbon fibre reinforced polymer composites is a challenging task due to a significant difference between physical and thermal properties of the constituent materials, i.e. polymer matrix and carbon fibres. This results in extended heat-affected zone (HAZ), taper kerf and poor surface finishing. This paper focuses on an investigation, attempting to minimise the divergence in the decomposition temperature of carbon fibres and epoxy resin by adding multi-walled carbon nanotubes in polymer matrix as a secondary reinforcement. High thermal conductivity of multi-walled carbon nanotubes increases the thermal diffusivity of polymer matrix, which in turn reduces the matrix recession. In addition, laser power and scan speed was also considered as an input parameter and their influence on output responses such as HAZ, taper angle and surface roughness has been studied. To analyse the effect of multi-walled carbon nanotubes on the resultant thermal damage, an innovative technique, i.e. scanning acoustic microscopy was used. This technique provides a ply-by-ply damage analysis. C-scans of the top and bottom surface of the machined holes in the composite were also carried out. Further, micrographs of the holes were taken to analyse the quality of the holes using field-emission scanning electron microscope. The obtained results indicated that HAZ, taper angle and surface roughness of holes decreased by ∼30%, ∼47% and ∼43%, respectively, with 1.5 wt% multi-walled carbon nanotubes doped carbon fibre reinforced polymer laminates, when compared with the results obtained from experiments with neat carbon fibre reinforced polymer composite laminates.


2017 ◽  
Vol 868 ◽  
pp. 172-177 ◽  
Author(s):  
Li Jun Yang ◽  
Xiao Liang Cheng ◽  
Gen Wang Wang ◽  
Qing Ming Xue ◽  
Ye Ding ◽  
...  

To investigate the cutting quality of Carbon Fibre Reinforced Polymer (CFRP) with pulsed laser, experiments of high modulus CFRP were carried out using a Nd: YAG pulsed laser with wavelength of 1064nm. Experiments with five factors and five levels were designed to apply the response surface methodologies (RSM). The influence rule of processing parameters consisting scanning speed, pulse frequency, pulse energy, pulse duration and gas pressure on the morphology of machining region including the kerf width, kerf taper and the width of heat affected zone were studied, and the interactions of these input parameters on cutting qualities were also analyzed. Parameters optimization were conducted based on the mathematical model using the optimization software Design Expert. Verification experiments were carried out to prove the adequacy of the optimization results. The infrared laser with pulsed mode was found to be an effective method in processing high modulus CFRP.


2019 ◽  
Author(s):  
Kristian Gjerrestad Andersen ◽  
Gbanaibolou Jombo ◽  
Sikiru Oluwarotimi Ismail ◽  
Segun Adeyemi ◽  
Rajini N ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document