scholarly journals Transport and accumulation of heavy metals in undisturbed soil columns

2013 ◽  
Vol 9 (3) ◽  
pp. 187-194

The podzolic soils of the Kola Peninsula, Russia, have in localised areas been highly contaminated with copper and nickel from smelting activities. Migration and retention of these metals were investigated in undisturbed soil columns irrigated with simulated background and polluted precipitation in order to study the temporal processes of retention and release within the soil. The mineral layers were strongly acidified by the contaminated precipitation. Forest floor layers demonstrated a high capacity to retain input Ni and Cu under all conditions. Mineral layers accumulated some Cu, but released Ni. In general, Ni leached through the soil faster than Cu. Since metals are strongly retained in the forest floor layer, even after reduction or cessation of inputs there may be a significant long–term risk of their leaching to deeper soil and groundwater. This risk cannot be ameliorated without remediative intervention.

2007 ◽  
Vol 7 ◽  
pp. 192-197 ◽  
Author(s):  
M. F. Hovmand ◽  
Kaare Kemp

Atmospheric bulk deposition of heavy metals (HM) was measured from 1972/73 to the present time at five to ten forest sites in rural areas of Denmark. From 1979, HM in aerosols were measured at one to four forest sites. On the basis of these long-term continuous measurements, the atmospheric inputs to the forest floor have been calculated. Yearly HM emission estimates to the European atmosphere seems to correlate well with yearly average values of HM deposition, as well as with HM concentrations in the ambient atmosphere. HM emissions have been estimated since the 1950s. Using the correlation between emission and deposition, HM deposition values maybe extrapolated in reverse chronological order. The accumulated atmospheric HM deposition has been estimated in this way over a period of 50 years.


2010 ◽  
pp. 75-86
Author(s):  
Yu. Vodianitsky ◽  
N. Kosareva ◽  
A. Savichev

In the Khibinsko-Lovozero district of the Kola Peninsula, the territory is divided into three geochemically different areas. In the background area near Umbozero, both mineral and peated samples contain all rare metals below clark: lanthanides and actinides are leaching heavily from acidic podzolic soils. В in the area of weak geochemical anomaly (near Lovozero), all lanthanides are inherited from the loparite-containing rock, and all actinides - Th: their content is 1.3-5.4 times higher than the clark value. In the zone of a strong geochemical anomaly (on the northern shore of Seidozero and on theThe concentration of lanthanides and actinides is even higher: 4-9 times higher than the clark value. There is an impact of a biological barrier that prevents excessive accumulation of of heavy metals in the mosses of a geochemical anomaly.


2014 ◽  
Vol 144 ◽  
pp. 195-204 ◽  
Author(s):  
Antonio López-Piñeiro ◽  
David Peña ◽  
Ángel Albarrán ◽  
Javier Sánchez-Llerena ◽  
Daniel Becerra

1998 ◽  
Vol 62 (6) ◽  
pp. 769-782 ◽  
Author(s):  
A. R. Chakhmouradian ◽  
R. H. Mitchell

AbstractApatite-dolomite carbonatite at Lesnaya Varaka, Kola Peninsula, Russia, hosts intricate mineral intergrowths composed of lueshite in the core and pyrochlore-group minerals in the rim. Lueshite is a primary Nb-bearing phase in the carbonatite and ranges in composition from cerian lueshite to almost pure NaNbO3. For comparison, the compositional variation of lueshite from the Kovdor and Sallanlatvi carbonatites is described. At Lesnaya Varaka, lueshite is replaced by nearly stoichiometric Na-Ca pyrochlore due to late-stage re-equilibration in the carbonatite system. X-ray powder diffraction data for both minerals are presented. Barian strontiopyrochlore, occurring as replacement mantles on Na-Ca pyrochlore, contains up to 43% Sr and 8–18% Ba at the A-site, and shows a high degree of hydration and strong ionic deficiency at the A- and Y-sites. This mineral is metamict and, upon heating, recrystallises to an aeschynite-type structure. Monazite-(Ce) found as minute crystals in fractures, represents the solid solution between monazite-(Ce) CePO4, brabantite CaTh(PO4)2 and SrTh(PO4)2. Our data indicate the high capacity of the monazite structure for Th and accompanying divalent cations at low temperatures and pressures that has a direct relevance to solving the problem of long-term conservation of radioactive wastes. Monazite-(Ce) and barian strontiopyrochlore are products of low-temperature hydrothermal or secondary (hypergene) alteration of the primary mineral assemblage of the carbonatite.


2020 ◽  
Vol 15 (1) ◽  
pp. 93-102
Author(s):  
Cristian PĂLTINEANU ◽  
◽  
Andrei VRINCEANU ◽  
Anca-Rovena LĂCĂTUȘU ◽  
Radu LĂCĂTUŞU ◽  
...  

2020 ◽  
Vol 51 (6) ◽  
pp. 528-540
Author(s):  
I. V. Lyanguzova ◽  
M. S. Bondarenko ◽  
A. I. Belyaeva ◽  
M. N. Kataeva ◽  
V. Sh. Barkan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document