Lueshite, pyrochlore and monazite-(Ce) from apatite-dolomite carbonatite, Lesnaya Varaka complex, Kola Peninsula, Russia

1998 ◽  
Vol 62 (6) ◽  
pp. 769-782 ◽  
Author(s):  
A. R. Chakhmouradian ◽  
R. H. Mitchell

AbstractApatite-dolomite carbonatite at Lesnaya Varaka, Kola Peninsula, Russia, hosts intricate mineral intergrowths composed of lueshite in the core and pyrochlore-group minerals in the rim. Lueshite is a primary Nb-bearing phase in the carbonatite and ranges in composition from cerian lueshite to almost pure NaNbO3. For comparison, the compositional variation of lueshite from the Kovdor and Sallanlatvi carbonatites is described. At Lesnaya Varaka, lueshite is replaced by nearly stoichiometric Na-Ca pyrochlore due to late-stage re-equilibration in the carbonatite system. X-ray powder diffraction data for both minerals are presented. Barian strontiopyrochlore, occurring as replacement mantles on Na-Ca pyrochlore, contains up to 43% Sr and 8–18% Ba at the A-site, and shows a high degree of hydration and strong ionic deficiency at the A- and Y-sites. This mineral is metamict and, upon heating, recrystallises to an aeschynite-type structure. Monazite-(Ce) found as minute crystals in fractures, represents the solid solution between monazite-(Ce) CePO4, brabantite CaTh(PO4)2 and SrTh(PO4)2. Our data indicate the high capacity of the monazite structure for Th and accompanying divalent cations at low temperatures and pressures that has a direct relevance to solving the problem of long-term conservation of radioactive wastes. Monazite-(Ce) and barian strontiopyrochlore are products of low-temperature hydrothermal or secondary (hypergene) alteration of the primary mineral assemblage of the carbonatite.

2013 ◽  
Vol 9 (3) ◽  
pp. 187-194

The podzolic soils of the Kola Peninsula, Russia, have in localised areas been highly contaminated with copper and nickel from smelting activities. Migration and retention of these metals were investigated in undisturbed soil columns irrigated with simulated background and polluted precipitation in order to study the temporal processes of retention and release within the soil. The mineral layers were strongly acidified by the contaminated precipitation. Forest floor layers demonstrated a high capacity to retain input Ni and Cu under all conditions. Mineral layers accumulated some Cu, but released Ni. In general, Ni leached through the soil faster than Cu. Since metals are strongly retained in the forest floor layer, even after reduction or cessation of inputs there may be a significant long–term risk of their leaching to deeper soil and groundwater. This risk cannot be ameliorated without remediative intervention.


2022 ◽  
Vol 3 ◽  
Author(s):  
Andrew Stephen Leach ◽  
Alice V. Llewellyn ◽  
Chao Xu ◽  
Chun Tan ◽  
Thomas M. M. Heenan ◽  
...  

Understanding the performance of commercially relevant cathode materials for lithium-ion (Li-ion) batteries is vital to realize the potential of high-capacity materials for automotive applications. Of particular interest is the spatial variation of crystallographic behavior across (what can be) highly inhomogeneous electrodes. In this work, a high-resolution X-ray diffraction technique was used to obtain operando transmission measurements of Li-ion pouch cells to measure the spatial variances in the cell during electrochemical cycling. Through spatially resolved investigations of the crystallographic structures, the distribution of states of charge has been elucidated. A larger portion of the charging is accounted for by the central parts, with the edges and corners delithiating to a lesser extent for a given average electrode voltage. The cells were cycled to different upper cutoff voltages (4.2 and 4.3 V vs. graphite) and C-rates (0.5, 1, and 3C) to study the effect on the structure of the NMC811 cathode. By combining this rapid data collection method with a detailed Rietveld refinement of degraded NMC811, the spatial dependence of the degradation caused by long-term cycling (900 cycles) has also been shown. The variance shown in the pristine measurements is exaggerated in the aged cells with the edges and corners offering an even lower percentage of the charge. Measurements collected at the very edge of the cell have also highlighted the importance of electrode alignment, with a misalignment of less than 0.5 mm leading to significantly reduced electrochemical activity in that area.


Author(s):  
Allen Angel ◽  
Kathryn A. Jakes

Fabrics recovered from archaeological sites often are so badly degraded that fiber identification based on physical morphology is difficult. Although diagenetic changes may be viewed as destructive to factors necessary for the discernment of fiber information, changes occurring during any stage of a fiber's lifetime leave a record within the fiber's chemical and physical structure. These alterations may offer valuable clues to understanding the conditions of the fiber's growth, fiber preparation and fabric processing technology and conditions of burial or long term storage (1).Energy dispersive spectrometry has been reported to be suitable for determination of mordant treatment on historic fibers (2,3) and has been used to characterize metal wrapping of combination yarns (4,5). In this study, a technique is developed which provides fractured cross sections of fibers for x-ray analysis and elemental mapping. In addition, backscattered electron imaging (BSI) and energy dispersive x-ray microanalysis (EDS) are utilized to correlate elements to their distribution in fibers.


Author(s):  
Karen A. Katrinak ◽  
James R. Anderson ◽  
Peter R. Buseck

Aerosol samples were collected in Phoenix, Arizona on eleven dates between July 1989 and April 1990. Elemental compositions were determined for approximately 1000 particles per sample using an electron microprobe with an energy-dispersive x-ray spectrometer. Fine-fraction samples (particle cut size of 1 to 2 μm) were analyzed for each date; coarse-fraction samples were also analyzed for four of the dates.The data were reduced using multivariate statistical methods. Cluster analysis was first used to define 35 particle types. 81% of all fine-fraction particles and 84% of the coarse-fraction particles were assigned to these types, which include mineral, metal-rich, sulfur-rich, and salt categories. "Zero-count" particles, consisting entirely of elements lighter than Na, constitute an additional category and dominate the fine fraction, reflecting the importance of anthropogenic air pollutants such as those emitted by motor vehicles. Si- and Ca-rich mineral particles dominate the coarse fraction and are also numerous in the fine fraction.


2002 ◽  
Vol 713 ◽  
Author(s):  
Roman V. Bogdanov ◽  
Yuri F. Batrakov ◽  
Elena V. Puchkova ◽  
Andrey S. Sergeev ◽  
Boris E. Burakov

ABSTRACTAt present, crystalline ceramic based on titanate pyrochlore, (Ca,Gd,Hf,Pu,U)2Ti2O7, is considered as the US candidate waste form for the immobilization of weapons grade plutonium. Naturally occuring U-bearing minerals with pyrochlore-type structure: hatchettolite, betafite, and ellsworthite, were studied in orders to understand long-term radiation damage effects in Pu ceramic waste forms. Chemical shifts (δ) of U(Lδ1)– and U(Lβ1) – X-ray emission lines were measured by X-ray spectrometry. Calculations were performed on the basis of a two-dimensional δLá1- and δLδ1- correlation diagram. It was shown that 100% of uranium in hatchettolite and, probably, 95-100% of uranium in betafite are in the form of (UO2)2+. formal calculation shows that in ellsworthite only 20% of uranium is in the form of U4+ and 80% of the rest is in the forms of U5+ and U6+. The conversion of the initial U4+ ion originally occurring in the pyrochlore structure of natural minerals to (UO2)2+ due to metamict decay causes a significant increase in uranium mobility.


2019 ◽  
Author(s):  
Paul Pearce ◽  
Gaurav Assat ◽  
Antonella Iadecola ◽  
François Fauth ◽  
Rémi Dedryvère ◽  
...  

The recent discovery of anionic redox as a means to increase the energy density of transition metal oxide positive electrodes is now a well established approach in the Li-ion battery field. However, the science behind this new phenomenon pertaining to various Li-rich materials is still debated. Thus, it is of paramount importance to develop a robust set of analytical techniques to address this issue. Herein, we use a suite of synchrotron-based X-ray spectroscopies as well as diffraction techniques to thoroughly characterize the different redox processes taking place in a model Li-rich compound, the tridimentional hyperhoneycomb β-Li2IrO3. We clearly establish that the reversible removal of Li+ from this compound is associated to a previously described reductive coupling mechanism and the formation of the M-(O-O) and M-(O-O)* states. We further show that the respective contributions to these states determine the spectroscopic response for both Ir L3-edge X-ray absorption spectroscopy (XAS) and X-ray photoemissions spectroscopy (XPS). Although the high covalency and the robust tridimentional structure of this compound enable a high degree of reversibile delithiation, we found that pushing the limits of this charge compensation mechanism has significant effects on the local as well as average structure, leading to electrochemical instability over cycling and voltage decay. Overall, this work highlights the practical limits to which anionic redox can be exploited and sheds some light on the nature of the oxidized species formed in certain lithium-rich compounds.<br>


2019 ◽  
Author(s):  
Paul Pearce ◽  
Gaurav Assat ◽  
Antonella Iadecola ◽  
François Fauth ◽  
Rémi Dedryvère ◽  
...  

The recent discovery of anionic redox as a means to increase the energy density of transition metal oxide positive electrodes is now a well established approach in the Li-ion battery field. However, the science behind this new phenomenon pertaining to various Li-rich materials is still debated. Thus, it is of paramount importance to develop a robust set of analytical techniques to address this issue. Herein, we use a suite of synchrotron-based X-ray spectroscopies as well as diffraction techniques to thoroughly characterize the different redox processes taking place in a model Li-rich compound, the tridimentional hyperhoneycomb β-Li2IrO3. We clearly establish that the reversible removal of Li+ from this compound is associated to a previously described reductive coupling mechanism and the formation of the M-(O-O) and M-(O-O)* states. We further show that the respective contributions to these states determine the spectroscopic response for both Ir L3-edge X-ray absorption spectroscopy (XAS) and X-ray photoemissions spectroscopy (XPS). Although the high covalency and the robust tridimentional structure of this compound enable a high degree of reversibile delithiation, we found that pushing the limits of this charge compensation mechanism has significant effects on the local as well as average structure, leading to electrochemical instability over cycling and voltage decay. Overall, this work highlights the practical limits to which anionic redox can be exploited and sheds some light on the nature of the oxidized species formed in certain lithium-rich compounds.<br>


2017 ◽  
Vol 1 (21) ◽  
pp. 65-73
Author(s):  
Monika Gwoździk

The paper presents results of studies on the crystallite sizes of oxide layer formed during a long-term operation on 10CrMo9-10 steel at an elevated temperature (T = 545° C, t = 200,000 h). This value was determined by a method based on analysis of the diffraction line profile, according to a Scherrer formula. The oxide layer was studied on a surface and a cross-section at the outer and inner site on the pipe outlet, at the fire and counter-fire wall of the tube. X-ray studies were carried out on the surface of a tube, then the layer’s surface was polished and the diffraction measurements repeated to reveal differences in the originated oxides layer.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Travis T. Sims ◽  
Molly B. El Alam ◽  
Tatiana V. Karpinets ◽  
Stephanie Dorta-Estremera ◽  
Venkatesh L. Hegde ◽  
...  

AbstractDiversity of the gut microbiome is associated with higher response rates for cancer patients receiving immunotherapy but has not been investigated in patients receiving radiation therapy. Additionally, current studies investigating the gut microbiome and outcomes in cancer patients may not have adjusted for established risk factors. Here, we sought to determine if diversity and composition of the gut microbiome was independently associated with survival in cervical cancer patients receiving chemoradiation. Our study demonstrates that the diversity of gut microbiota is associated with a favorable response to chemoradiation. Additionally, compositional variation among patients correlated with short term and long-term survival. Short term survivor fecal samples were significantly enriched in Porphyromonas, Porphyromonadaceae, and Dialister, whereas long term survivor samples were significantly enriched in Escherichia Shigella, Enterobacteriaceae, and Enterobacteriales. Moreover, analysis of immune cells from cervical tumor brush samples by flow cytometry revealed that patients with a high microbiome diversity had increased tumor infiltration of CD4+ lymphocytes as well as activated subsets of CD4 cells expressing ki67+ and CD69+ over the course of radiation therapy. Modulation of the gut microbiota before chemoradiation might provide an alternative way to enhance treatment efficacy and improve treatment outcomes in cervical cancer patients.


2021 ◽  
pp. 088626052098781
Author(s):  
Marin R. Wenger ◽  
Brendan Lantz

Prior research suggests that many crime types are spatially concentrated and stable over time. Hate crime, however, is a unique crime type that is etiologically distinct from others. As such, examination of hate crime from a spatial and temporal perspective offers an opportunity to understand hate crime and the spatial concentration of crime more generally. The current study examines the spatial stability of hate crimes reported to the police in Washington, D.C., from 2012 through 2018 using street segments, intersections, and block groups as units of analysis. Findings reveal that hate crime is spatially concentrated, with less than 4% of street segments and intersections experiencing hate crime over the study period. Results reveal a high degree of spatial stability, both year-to-year and over the long term even when restricting the analysis to units that experienced at least one hate crime.


Sign in / Sign up

Export Citation Format

Share Document