scholarly journals Colloidal activated carbon and carbon-iron-novel materials for in-situ groundwater treatment

2013 ◽  
Vol 10 (1) ◽  
pp. 54-61

Two novel materials have been developed and tested in initial studies for the in-situ generation of sorption and reactive barriers for subsurface water treatment at low cost by introducing sorbents or reagents via injection wells. Both materials are based on finely-ground activated carbon with a particle size of D50 = 0.8 μm which is quasi-soluble, i.e. it forms stable colloidal solutions in water over a wide concentration range. With these activated carbon colloids, an approved material of environmental technology is now applicable for injection into contaminated aquifers to form sorption barriers by controlled deposition on aquifer sediment directly in the flow passages. A new remediation strategy can be followed – the in-situ generation of a permeable AC sorption barrier in contaminated aquifers. Based on the colloidal carbon particles, a second material has been developed which combines the sorption properties of the activated carbon carrier and the reactivity of the zerovalent iron deposits. This CARBO-IRON (20 wt-% zero-valent iron) has proved its suitability as a dehalogenation reagent applicable for both plume and source treatment.

RSC Advances ◽  
2016 ◽  
Vol 6 (18) ◽  
pp. 14819-14825 ◽  
Author(s):  
Kai Zhu ◽  
Yu Wang ◽  
Joel A. Tang ◽  
Hailong Qiu ◽  
Xing Meng ◽  
...  

MnO2 nanosheets were successfully grown in situ on the surface of activated carbon fibers (ACFs) via a facile microwave-assisted hydrothermal method.


2012 ◽  
Vol 549 ◽  
pp. 703-706
Author(s):  
De Yi Zhang ◽  
Jing Wu ◽  
Bai Yi Chen ◽  
He Ming Luo ◽  
Kun Jie Wang ◽  
...  

In this paper, a novel carbon/bentonite composite was prepared using sucrose as carbon source and bentonite as raw material. The characterization results shown that plenty of carbon particles distribute on the surface of the composite, and an abundant of functional groups, such as SO3H, carboxylic and hydroxyl groups, were successfully introduced onto the surface of the prepared composite. The adsorption capacity of the prepared composite for typical heavy metal ions and methylene blue deys also was investigated and compared with activated carbon and bentonite, the results show that the composite shows excellent adsorprion performance for heavy metal ions, and the adsorption capacity for Cu2+and Ni2+ increase by 136% and 591% than natural bentonite, respectSuperscript textively. The prepared composite with excellent adsorption performance could be used as a low-cost alternative to activated carbon for the treatment of heavy metal ions polluted wastewater.


2019 ◽  
Vol 3 (1) ◽  
pp. 1
Author(s):  
Yanti Suprianti ◽  
Annisa Syafitri Kurniasetyawati

Produk biogas memiliki spesifikasi yang masih perlu ditingkatkan (mengandung metana, CH4 50-70%, dan karbon dioksida, CO2 30 – 49%), agar dapat bersaing dengan gas alam, yaitu lebih dari 98% metana. Metode pemurnian melalui adsorpsi CO2 paling banyak diterapkan, karena tidak memerlukan biaya tinggi, jika dibandingkan teknologi pemisahan konvensional lain. Tetapi, media adsorben karbon aktif akan mengalami kejenuhan dalam waktu tertentu. Salah satu metode yang dapat digunakan untuk meregenerasi karbon aktif yang jenuh oleh CO2 yaitu dengan peningkatan temperatur melalui metoda termal. Pada penelitian ini dilakukan regenerasi in-situ dengan peningkatan temperatur karbon aktif di dalam kolom adsorpsi-desorpsi, dengan alat dapat mengakomodasi tiga pola operasi, yaitu adsorpsi, regenerasi/desorpsi, dan pengosongan gas. Alat terdiri atas kolom yang dilengkapi perpipaaan, blower pendorong udara, heater dan thermostat untuk pemanas dan pengatur temperatur udara. Hasil uji alat menunjukkan bahwa durasi proses adsorpsi hingga mencapai kejenuhan adalah 30 menit pada siklus pertama dan 40 menit pada siklus kedua. Selanjutnya, durasi proses desorpsi dari siklus pertama hingga ketiga menunjukkan peningkatan linier, dipengaruhi oleh temperatur udara pemanas, dengan penurunan konsentrasi Ca(OH)2 hingga masih menunjukkan tren peningkatan. Setelah dilakukan tiga siklus proses adsorspi-desorpsi didapatkan bahwa performa dari karbon aktif masih belum mengalami penurunan kapasitas.Biogas have certain specifications that need to be improved (contain methane, CH4, 50-70%, and carbon dioxide, CO2, 30-49%), in order to compete with natural gas ( >98% methane). The adsorption of CO2 is the most widely applied to purify biogas since it considered as low cost, in terms of energy supply and raw materials. However, activated carbon adsorbent will be saturated and must be regenerated. One of the methods that can be used to regenerate CO2-saturated activated carbon is using thermal method. In this research, the in-situ regeneration was carried out by increasing temperature of the activated carbon in adsorption-desorption column, which accommodate three operating patterns, namely adsorption, regeneration/desorption, and gas discharge. The tool consists of columns, piping, blower, heater and thermostat for air heating and controlling temperature. The result showed that the saturation time was 30 minutes and 40 minutes, respectively in 1st and 2nd cycle. The duration of the desorption from the 1st to 3rd cycle showed a linear trend, influenced by heating air temperature. And the reduction in Ca(OH)2 concentration still showed increasing trend after three adsorption-desorption cycles carried out, so the performance or adsorption capacity of activated carbon had not yet been decreased.


2011 ◽  
Vol 194-196 ◽  
pp. 1652-1655 ◽  
Author(s):  
De Yi Zhang ◽  
Ying Ma ◽  
Yi Wang ◽  
Hui Xia Feng ◽  
Jiao Chen ◽  
...  

In this paper, a novel sulfonic acid-functionalized carbon/loess composite was prepared using sucrose as carbon source and loess as raw material. The characterization results shown that plenty of carbon particles distribute on the surface of the composite, and an abundant of SO3H groups were successfully introduced onto the surface of the prepared composite through incomplete carbonization of sucrose and sulfonation of carbon particles. The adsorption capacity of the prepared composite for typical heavy metal ions also was investigated and compared with activated carbon, the results show that the composite shows excellent adsorprion performance, and the adsorption capacity for Fe3+, Pb2+, Cu2+, Cd2+, Ni2+can reach about 412%, 249%, 153%, 134% and 120% of the capacity of activated carbon, respectively. The prepared composite with excellent adsorption performance could be used as a low-cost alternative to activated carbon for the removal of heavy metal ions from wastewater.


2009 ◽  
Vol 46 (5) ◽  
pp. 252-256
Author(s):  
Andreas Rummel ◽  
Gavin Frayne ◽  
Andrew Jonathan Smith ◽  
Stephan Kleindiek
Keyword(s):  

Author(s):  
Jian-Shing Luo ◽  
Hsiu Ting Lee

Abstract Several methods are used to invert samples 180 deg in a dual beam focused ion beam (FIB) system for backside milling by a specific in-situ lift out system or stages. However, most of those methods occupied too much time on FIB systems or requires a specific in-situ lift out system. This paper provides a novel transmission electron microscopy (TEM) sample preparation method to eliminate the curtain effect completely by a combination of backside milling and sample dicing with low cost and less FIB time. The procedures of the TEM pre-thinned sample preparation method using a combination of sample dicing and backside milling are described step by step. From the analysis results, the method has applied successfully to eliminate the curtain effect of dual beam FIB TEM samples for both random and site specific addresses.


2019 ◽  
Author(s):  
Nikki Theofanopoulou ◽  
Katherine Isbister ◽  
Julian Edbrooke-Childs ◽  
Petr Slovák

BACKGROUND A common challenge within psychiatry and prevention science more broadly is the lack of effective, engaging, and scale-able mechanisms to deliver psycho-social interventions for children, especially beyond in-person therapeutic or school-based contexts. Although digital technology has the potential to address these issues, existing research on technology-enabled interventions for families remains limited. OBJECTIVE The aim of this pilot study was to examine the feasibility of in-situ deployments of a low-cost, bespoke prototype, which has been designed to support children’s in-the-moment emotion regulation efforts. This prototype instantiates a novel intervention model that aims to address the existing limitations by delivering the intervention through an interactive object (a ‘smart toy’) sent home with the child, without any prior training necessary for either the child or their carer. This pilot study examined (i) engagement and acceptability of the device in the homes during 1 week deployments; and (ii) qualitative indicators of emotion regulation effects, as reported by parents and children. METHODS In this qualitative study, ten families (altogether 11 children aged 6-10 years) were recruited from three under-privileged communities in the UK. The RA visited participants in their homes to give children the ‘smart toy’ and conduct a semi-structured interview with at least one parent from each family. Children were given the prototype, a discovery book, and a simple digital camera to keep at home for 7-8 days, after which we interviewed each child and their parent about their experience. Thematic analysis guided the identification and organisation of common themes and patterns across the dataset. In addition, the prototypes automatically logged every interaction with the toy throughout the week-long deployments. RESULTS Across all 10 families, parents and children reported that the ‘smart toy’ was incorporated into children’s emotion regulation practices and engaged with naturally in moments children wanted to relax or calm down. Data suggests that children interacted with the toy throughout the duration of the deployment, found the experience enjoyable, and all requested to keep the toy longer. Child emotional connection to the toy—caring for its ‘well-being’—appears to have driven this strong engagement. Parents reported satisfaction with and acceptability of the toy. CONCLUSIONS This is the first known study investigation of the use of object-enabled intervention delivery to support emotion regulation in-situ. The strong engagement and qualitative indications of effects are promising – children were able to use the prototype without any training and incorporated it into their emotion regulation practices during daily challenges. Future work is needed to extend this indicative data with efficacy studies examining the psychological efficacy of the proposed intervention. More broadly, our findings suggest the potential of a technology-enabled shift in how prevention interventions are designed and delivered: empowering children and parents through ‘child-led, situated interventions’, where participants learn through actionable support directly within family life, as opposed to didactic in-person workshops and a subsequent skills application.


Sign in / Sign up

Export Citation Format

Share Document