scholarly journals Measurement and prediction of karstic spring flow rates

2015 ◽  
Vol 17 (2) ◽  
pp. 257-270 ◽  

<div> <p>This paper deals with prediction of the response of karstic springs by means of artificial neural networks (ANNs). A feed-forward back propagation ANN with three layers has been developed, to predict flow rates of two karstic springs, located at Rouvas area, Crete, Greece, using rainfall data as input. While the number of neurons of the input and output layers was determined by choice of data and desired output respectively, the number of neurons of the hidden layer was decided by means of numerous tests. Data used in ANN training and testing include daily and monthly precipitation depths (from September, 2006 to December, 2010) and measured flow rates of the two springs (from April, 2007 to December, 2010). Results show that the trained artificial neural network performed well, although flow rate measurements were not very regular. Moreover, the possibility of estimating the flow rate of one spring, based on measurements of the other has been investigated. Again the ANN gave satisfactory results. All spring flow rate and rainfall measurements are presented as an appendix, to facilitate further scientific research in the area of ANN application to water resources management.</p> </div> <p>&nbsp;</p>

1999 ◽  
Vol 50 (1) ◽  
pp. 73 ◽  
Author(s):  
Simon G. Robertson ◽  
Alexander K. Morison

Artificial neural networks (ANNs) have the potential to automate routine ageing of fish with the benefit of increased speed in processing, greater objectivity and repeatability of estimates, and a mechanism for quantifying uncertainty of age estimates. ANN models were tested as a means of objectively replicating the age estimates of an experienced human reader. Feed-forward back- propagation ANNs, with three layers of neurons (input, hidden and output), were trained to classify the age of previously aged samples of three temperate species. Three ANN structures, where the number of neurons in the hidden layer was varied, were tested for each species. Inputs to each ANN were pixel brightness values along transects across images of sectioned otoliths. The ANN predicted age-class membership by the position of the neuron in the output layer with the highest value. After training, at least one of the three ANN structures correctly classified the age of fish from unseen transects for two members of the Sparidae family Acanthopagrus butcheri and Pagrus auratus at an accuracy level approaching that of an expert reader. For a member of the Merlucciidae family, Macruronus novaezelandiae, however, which is a species with more complex otolith structure, error rates were high for all three ANN structures tested.


2021 ◽  
Author(s):  
DEVIN NIELSEN ◽  
TYLER LOTT ◽  
SOM DUTTA ◽  
JUHYEONG LEE

In this study, three artificial neural network (ANN) models are developed with back propagation (BP) optimization algorithms to predict various lightning damage modes in carbon/epoxy laminates. The proposed ANN models use three input variables associated with lightning waveform parameters (i.e., the peak current amplitude, rising time, and decaying time) to predict fiber damage, matrix damage, and through-thickness damage in the composites. The data used for training and testing the networks was actual lightning damage data collected from peer-reviewed published literature. Various BP training algorithms and network architecture configurations (i.e., data splitting, the number of neurons in a hidden layer, and the number of hidden layers) have been tested to improve the performance of the neural networks. Among the various BP algorithms considered, the Bayesian regularization back propagation (BRBP) showed the overall best performance in lightning damage prediction. When using the BRBP algorithm, as expected, the greater the fraction of the collected data that is allocated to the training dataset, the better the network is trained. In addition, the optimal ANN architecture was found to have a single hidden layer with 20 neurons. The ANN models proposed in this work may prove useful in preliminary assessments of lightning damage and reduce the number of expensive experimental lightning tests.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Tamer Khatib ◽  
Irjuwan Abunajeeb ◽  
Zainab Heneni

Missions to Mars need a power source, while, one of the most compatible sources for such a purpose is the photovoltaic system. Photovoltaic systems generate power based on the available energy from the Sun, and thus, solar radiation intensity at Mars should be known for design purposes. In this research, the feed-forward back-propagation artificial neural network is developed to predict solar radiation in terms of longitude, latitude, time of the day, temperature, altitude, pressure, amount of dust, and volume mixing ratio of water ice clouds. Data which are used to develop this model are obtained from the Mars Climate Database. The results of the developed method are accurate as compared with other methods whereas the correlation (R2) coefficient for the developed model is 0.97. The developed model then is used to predict mean solar radiation and mean temperature for every location on Mars and then the data are presented on Mars maps in order to determine the best location for harvesting energy from the Sun by photovoltaic systems. According to results, the solar radiation-temperature belt on Mars is found to be between latitudes 20 deg south and 15 deg north.


2011 ◽  
Vol 94 (1) ◽  
pp. 322-326
Author(s):  
Mohammadreza Khanmohammadi ◽  
Amir Bagheri Garmarudi ◽  
Mohammad Babaei Rouchi ◽  
Nafiseh Khoddami

Abstract A method has been established for simultaneous determination of sodium sulfate, sodium carbonate, and sodium tripolyphosphate in detergent washing powder samples based on attenuated total reflectance Fourier transform IR spectrometry in the mid-IR spectral region (800–1550 cm−1). Genetic algorithm (GA) wavelength selection followed by feed forward back-propagation artificial neural network (BP-ANN) was the chemometric approach. Root mean square error of prediction for BP-ANN and GA-BP-ANN was 0.0051 and 0.0048, respectively. The proposed method is simple, with no tedious pretreatment step, for simultaneous determination of the above-mentioned components in commercial washing powder samples.


2012 ◽  
Vol 576 ◽  
pp. 91-94 ◽  
Author(s):  
Erry Yulian Triblas Adesta ◽  
Muataz H.F. Al Hazza ◽  
M.Y. Suprianto ◽  
Muhammad Riza

Machining of hardened steel at high cutting speeds produces high temperatures in the cutting zone, which affects the surface quality and cutting tool life. Thus, predicting the temperature in early stage becomes utmost importance. This research presents a neural network model for predicting the cutting temperature in the CNC end milling process. The Artificial Neural Network (ANN) was applied as an effective tool for modeling and predicting the cutting temperature. A set of sparse experimental data for finish end milling on AISI H13 at hardness of 48 HRC have been conducted to measure the cutting temperature. The artificial neural network (ANN) was applied to predict the cutting temperature. Twenty hidden layer has been used with feed forward back propagation hierarchical neural networks were designed with Matlab2009b Neural Network Toolbox. The results show a high correlation between the predicted and the observed temperature which indicates the validity of the models.


2015 ◽  
Vol 19 (1) ◽  
pp. 85-93 ◽  
Author(s):  
Ehsan Momeni ◽  
Ramli Nazir ◽  
Danial Jahed Armaghani ◽  
Harnedi Maizir

<p class="MsoNormal" style="text-align: justify; line-height: 200%;">Axial bearing capacity (ABC) of piles is usually determined by static load test (SLT). However, conducting SLT is costly and time-consuming. High strain dynamic pile testing (HSDPT) which is provided by pile driving analyzer (PDA) is a more recent approach for predicting the ABC of piles. In comparison to SLT, PDA test is quick and economical. Implementing feed forward back-propagation artificial neural network (ANN) for solving geotechnical problems has recently gained attention mainly due to its ability in finding complex nonlinear relationships among different parameters. In this study, an ANN-based predictive model for estimating ABC of piles and its distribution is proposed. For network construction purpose, 36 PDA tests were performed on various concrete piles in different project sites. The PDA results, pile geometrical characteristics as well as soil investigation data were used for training the ANN models. Findings indicate the feasibility of ANN in predicting ultimate, shaft and tip bearing resistances of piles. The coefficients of determination, R², equal to 0.941, 0.936, and 0.951 for testing data reveal that the shaft, tip and ultimate bearing capacities of piles predicted by ANN-based model are in close agreement with those of HSDPT. By using sensitivity analysis, it was found that the length and area of the piles are dominant factors in the proposed predictive model.</p><p class="MsoNormal" style="text-align: justify; line-height: 200%;"> </p><p class="MsoNormal" style="text-align: justify; line-height: 200%;"><strong>Resumen</strong></p><p class="MsoNormal" style="text-align: justify; line-height: 200%;">La Capacidad Axial de Soporte (ABC, en inglés) de un pilote de construcción se determina usualmente a través de una Prueba de Carga Estática (SLT, inglés). Sin embargo, estas pruebas son costosas y demandan tiempo. La evaluación de las Dinámicas de Alto Esfuerzo de Pilotes (HSDPT, inglés), que la provee el programa de Análisis de Excavación (PDA, inglés), es una forma de aproximación más reciente para preveer la Capacidad Axial de Soporte. En comparación con la Prueba de Cargas Estática, la evaluación PDA es rápida y económica. La implementación de Redes Neuronales Arficiales (ANN, en inglés) que permita resolver problemas geotécnicos ha ganado atención recientemente debido a su posibilidad de hallar relaciones no lineales entre los diferentes parámetros. En este estudio se propone un modelo predictivo ANN para estimar la Capacidad Axial de Soporte de pilotes y su distribución. Para fines de una red de construcción se realizaron 36 pruebas PDA en pilotes de diferentes proyectos. Los resultados de los Análisis de Excavación, las características geométricas de los pilotes, al igual que los datos de investigación del suelo se utilizaron para probar los modelos ANN. Los resultados indican la viabilidad del modelo ANN en predecir la resistencia de los pilotes. Los coeficientes de correlación, R², que alcanzaron 0.941, 09.36 y 0.951 para la evaluación de los datos, revelan que la capacidad del pilotaje en el último rodamiento, en el cojinete del eje y en la punta que se predijeron con el modelo ANN concuerda con las establecidas a través del HSDPT. A través del análisis de respuesta se determinó que la longitud y el área de los pilotes son factores dominantes en el modelo predictivo propuesto.</p>


Author(s):  
Nicholas Christakis ◽  
Michael Politis ◽  
Panagiotis Tirchas ◽  
Minas Achladianakis ◽  
Eleftherios Avgenikou ◽  
...  

Covid-19 is the most recent strain from the corona virus family that its rapid spread across the globe has caused a pandemic, resulting in over 200,000,000 infections and over 4,000,000 deaths so far. Many countries had to impose full lockdowns, with serious effects in all aspects of everyday life (economic, social etc.). In this paper, a computational framework is introduced, aptly named COVID-LIBERTY, in order to assist the study of the pandemic in Europe. Initially, the mathematics and details of the computational engine of the framework, a feed-forward, back-propagation Artificial Neural Network are presented. 5 European countries with similar population numbers were chosen and we examined the main factors that influence the spread of the virus, in order to be taken into consideration in the simulations. In this way lockdown, seasonal variability and virus effective reproduction were considered. The effectiveness of lockdown in the spread of the virus was examined and the Lockdown Index was introduced. Moreover, the relation of Covid- 19 to seasonal variability was demonstrated and the parametrization of seasonality presented.


2021 ◽  
Vol 16 (3) ◽  
pp. 239-299
Author(s):  
Asma Adda ◽  
Salah Bezari ◽  
Mohamed Salmi ◽  
Giulio Lorenzini ◽  
Maamar Laidi ◽  
...  

An attempt is conducted in this paper to develop an artificial neural network (ANN) model for predicting the efficiency of small-scale NF/RO seawater desalination, then applied to the simulation of permeate flow rate and water recovery. A feed-forward back-propagation neural network with the Levenberg-Marquardt learning algorithm is considered. The performance of ANN compared to the multiple linear regression (MLR) is based on the calculated value of the coefficient of determination (R2). For ANN, R2 permeate flow rate was 0.997, and R2 permeate water recovery was 0.999, and for MLR, R2 permeate flow rate was 0.508, and R2 permeate water recovery was 0.713. It was observed that ANN performed better than the MLR.


2013 ◽  
Vol 14 (1) ◽  
pp. 10-17

Artificial neural networks (ANNs) are being used increasingly to predict water variables. This study offers an alternative approach to quantify the relationship between time of chlorination in potable water (due to convectional treatment procedure) and chlorination by-products concentration (expressed as carbon and bromine) with an ANN model, i.e., capturing non-linear relationships among the water quality variables. Thus, carbon and bromine concentrations in potable water (the second chosen due to the toxicity of brominated trihalomethanes, THMs) were predicted using artificial neural networks (ANNs) based mainly on multi-layer perceptrons (MLPs) architecture. The chlorination (detention) time as much as 58 hours in Athens distributed network, comprised the input variables to the ANNs models. Moreover, to develop an ANN model for estimating carbon and bromine, the available data set was partitioned into training, validation and test set. In order to reach an optimum amount of hidden layers or nodes, different architectures were tested. The quality of the ANN simulations was evaluated in terms of the error in the validation sample set for the proper interpretation of the results. The calculated sum-squared errors for training, validation and test set were 0.056, 0.039 and 0.060 respectively for the best model selected. Comparison of the results showed that a two-layer feed-forward back propagation ANN model could be used as an acceptable model for predicting carbon and bromine contained in potable water THMs.


Sign in / Sign up

Export Citation Format

Share Document