scholarly journals Dusty atmospheric sediments of cold season of the year in Ivano-Frankivsk region

Author(s):  
Dmytro Ganzha ◽  
Ryta Ganzha

Physical properties of dusty sediment on snow cover in the Forecarpathian region were studied. Analysis of the suspension of atmospheric dust in melted snow was conducted by nephelometry method. The evaluation of the properties of the dust was carried out by the sedimentation dynamics of the particles of suspension in melted snow. The data were processed by methods of correlation, regression, variance, ecological and geochemical analyses. It was established that 12 % of surveyed area are in a regional natural background, more than a third is in a man-made pollution, a half is in a manmade background. Key words: atmospheric air dust, environmental monitoring, observation of snow, man-made pollution.

Author(s):  
I. V. May ◽  
A. A. Kokoulina ◽  
S. Yu. Balashov

Introduction. The city of Chita of Zabaikalsky region is one of the cities of Russia, priority on level of pollution of atmosphere. Of the order of 130 impurities emitted by the sources of the city, 12 are monitored at 5 posts of the Roshydromet network. Maximum monthly average concentrations are formed by benz (a) pyrene (up to 56.8 MPC), hydrogen sulfide (12.3 MPC), suspended particles (up to 4PDC), phenol (up to 3.6 MPC). Significant emissions (59.73 thousand tons in 2018) are aggravated by the use of coal as a fuel by heat and power enterprises and the private sector, climatic and geographical features. Within the framework of the Federal project “Clean Air” of the national project “Ecology”, it is envisaged to reduce the gross emission of pollutants into the atmosphere of Chita by 8.75 thousand tons by 2024, which should lead to a significant improvement in the safety and quality of life of citizens. It is necessary to identify the most “risky “components of pollution for health.It is important to understand: whether the environmental monitoring system reflects the real picture of the dangers posed by pollution of the city’s atmosphere; whether there is a need to optimize the monitoring system for the subsequent assessment of the effectiveness and efficiency of measures; what impurities and at what points should be monitored in the interests of the population, administration and economic entities implementing air protection measures.The aim of the study is to develop recommendations for optimizing the program of environmental monitoring of air quality in the city of Chita, taking into account the criteria of danger to public health for the subsequent evaluation of the effectiveness and effectiveness of the Federal project “Clean Air”.Materials and methods. Justification of optimization of monitoring programs was carried out through the calculation of hazard indices, considering: the mass of emissions and toxicological characteristics of each chemical; the population under the influence. A vector map of the city with a layer “population density” was used as a topographic base. The indices were calculated for regular grid cells covering the residential area. For each cell, the repeatability of winds of 8 points from the priority enterprises and the population within the calculated cell were taken into account. As a result, each calculation cell was characterized by a total coefficient, taking into account the danger of potential impacts of emissions. Based on the results of the assessments, recommendations were formulated to optimize the placement of posts in the city and the formation of monitoring programs.Results. Indices of carcinogenic danger to the health of the population of Chita ranged from 584,805. 96 to 0.03 (priorities: carbon (soot), benzene, benz (a) pyrene); indices of non-carcinogenic danger — from 1,443,558. 24 to 0.00 (priorities: sulfur dioxide, inorganic dust containing 70–20% SiO2, fuel oil ash). The greatest danger to public health stationary sources of emissions form in the North-Western, Western and South-Eastern parts of the city. Roshydromet posts in these zones are absent.Conclusions. As part of the objectives of the project “Clean Air”, it is recommended to Supplement the existing state network of observations of atmospheric air quality in Chita with two posts; to include manganese, xylene, vanadium pentoxide in the monitoring programs, to carry out the determination of Benz(a)pyrene et all posts, which will allow to fully and adequately assess the danger of emissions of economic entities, as well as the effectiveness and efficiency of the provided air protection measures.


2010 ◽  
Vol 24 (13) ◽  
pp. 1755-1765 ◽  
Author(s):  
Yukiyoshi Iwata ◽  
Tomoyoshi Hirota ◽  
Masaki Hayashi ◽  
Shinji Suzuki ◽  
Shuichi Hasegawa

Author(s):  
Alan K Betts ◽  
Raymond L Desjardins

Analysis of the hourly Canadian Prairie data for the past 60 years has transformed our quantitative understanding of land-atmosphere-cloud coupling. The key reason is that trained observers made hourly estimates of opaque cloud fraction that obscures the sun, moon or stars, following the same protocol for 60 years at all stations. These 24 daily estimates of opaque cloud data are of sufficient quality that they can be calibrated against Baseline Surface Radiation Network data to give the climatology of the daily short-wave, longwave and total cloud forcing (SWCF, LWCF and CF). This key radiative forcing has not been available previously for climate datasets. Net cloud radiative forcing reverses sign from negative in the warm season to positive in the cold season, when reflective snow reduces the negative SWCF below the positive LWCF. This in turn leads to a large climate discontinuity with snow cover, with a systematic cooling of 10°C or more with snow cover. In addition, snow cover transforms the coupling between cloud cover and the diurnal range of temperature. In the warm season, maximum temperature increases with decreasing cloud, while minimum temperature barely changes; while in the cold season with snow cover, maximum temperature decreases with decreasing cloud and minimum temperature decreases even more. In the warm season, the diurnal ranges of temperature, relative humidity, equivalent potential temperature and the pressure height of the lifting condensation level are all tightly coupled to opaque cloud cover. Given over 600 station-years of hourly data, we are able to extract, perhaps for the first time, the coupling between cloud forcing and the warm season imbalance of the diurnal cycle; which changes monotonically from a warming and drying under clear skies to a cooling and moistening under cloudy skies with precipitation. Because we have the daily cloud radiative forci, which is large, we are able to show that the memory of water storage anomalies, from precipitation and the snowpack, goes back many months. The spring climatology shows the memory of snowfall back through the entire winter, and the memory in summer goes back to the months of snowmelt. Lagged precipitation anomalies modify the thermodynamic coupling of the diurnal cycle to the cloud forcing, and shift the diurnal cycle of mixing ratio which has a double peak. The seasonal extraction of the surface total water storage is a large damping of the interannual variability of precipitation anomalies in the growing season. The large land-use change from summer fallow to intensive cropping, which peaked in the early 1990s, has led to a coupled climate response that has cooled and moistened the growing season, lowering cloud-base, increasing equivalent potential temperature, and increasing precipitation. We show a simplified energy balance of the Prairies during the growing season and its dependence on reflective cloud.


2019 ◽  
Vol 32 (18) ◽  
pp. 6015-6033 ◽  
Author(s):  
Lars Gerlitz ◽  
Eva Steirou ◽  
Christoph Schneider ◽  
Vincent Moron ◽  
Sergiy Vorogushyn ◽  
...  

Abstract Central Asia (CA) is subjected to a large variability of precipitation. This study presents a statistical model, relating precipitation anomalies in three subregions of CA in the cold season (November–March) with various predictors in the preceding October. Promising forecast skill is achieved for two subregions covering 1) Uzbekistan, Turkmenistan, Kyrgyzstan, Tajikistan, and southern Kazakhstan and 2) Iran, Afghanistan, and Pakistan. ENSO in October is identified as the major predictor. Eurasian snow cover and the quasi-biennial oscillation further improve the forecast performance. To understand the physical mechanisms, an analysis of teleconnections between these predictors and the wintertime circulation over CA is conducted. The correlation analysis of predictors and large-scale circulation indices suggests a seasonal persistence of tropical circulation modes and a dynamical forcing of the westerly circulation by snow cover variations over Eurasia. An EOF analysis of pressure and humidity patterns allows separating the circulation variability over CA into westerly and tropical modes and confirms that the identified predictors affect the respective circulation characteristics. Based on the previously established weather type classification for CA, the predictors are investigated with regard to their effect on the regional circulation. The results suggest a modification of the Hadley cell due to ENSO variations, with enhanced moisture supply from the Arabian Gulf during El Niño. They further indicate an influence of Eurasian snow cover on the wintertime Arctic Oscillation (AO) and Northern Hemispheric Rossby wave tracks. Positive anomalies favor weather types associated with dry conditions, while negative anomalies promote the formation of a quasi-stationary trough over CA, which typically occurs during positive AO conditions.


2019 ◽  
Author(s):  
Daud Mohamad ◽  
Salmia Beddu ◽  
Siti Nabihah Sadon ◽  
Hong Wei Sheng ◽  
Iszmir Nazmi Ismail ◽  
...  

Environments ◽  
2018 ◽  
Vol 5 (12) ◽  
pp. 129 ◽  
Author(s):  
Alan Betts ◽  
Raymond Desjardins

Analysis of the hourly Canadian Prairie data for the past 60 years has transformed our quantitative understanding of land–atmosphere–cloud coupling. The key reason is that trained observers made hourly estimates of the opaque cloud fraction that obscures the sun, moon, or stars, following the same protocol for 60 years at all stations. These 24 daily estimates of opaque cloud data are of sufficient quality such that they can be calibrated against Baseline Surface Radiation Network data to yield the climatology of the daily short-wave, long-wave, and total cloud forcing (SWCF, LWCF and CF, respectively). This key radiative forcing has not been available previously for climate datasets. Net cloud radiative forcing changes sign from negative in the warm season, to positive in the cold season, when reflective snow reduces the negative SWCF below the positive LWCF. This in turn leads to a large climate discontinuity with snow cover, with a systematic cooling of 10 °C or more with snow cover. In addition, snow cover transforms the coupling between cloud cover and the diurnal range of temperature. In the warm season, maximum temperature increases with decreasing cloud, while minimum temperature barely changes; while in the cold season with snow cover, maximum temperature decreases with decreasing cloud, and minimum temperature decreases even more. In the warm season, the diurnal ranges of temperature, relative humidity, equivalent potential temperature, and the pressure height of the lifting condensation level are all tightly coupled to the opaque cloud cover. Given over 600 station-years of hourly data, we are able to extract, perhaps for the first time, the coupling between the cloud forcing and the warm season imbalance of the diurnal cycle, which changes monotonically from a warming and drying under clear skies to a cooling and moistening under cloudy skies with precipitation. Because we have the daily cloud radiative forcing, which is large, we are able to show that the memory of water storage anomalies, from precipitation and the snowpack, goes back many months. The spring climatology shows the memory of snowfall back through the entire winter, and the memory in summer, goes back to the months of snowmelt. Lagged precipitation anomalies modify the thermodynamic coupling of the diurnal cycle to the cloud forcing, and shift the diurnal cycle of the mixing ratio, which has a double peak. The seasonal extraction of the surface total water storage is a large damping of the interannual variability of precipitation anomalies in the growing season. The large land-use change from summer fallow to intensive cropping, which peaked in the early 1990s, has led to a coupled climate response that has cooled and moistened the growing season, lowering cloud-base, increasing equivalent potential temperature, and increasing precipitation. We show a simplified energy balance of the Prairies during the growing season, and its dependence on reflective cloud.


1992 ◽  
Vol 19 (1) ◽  
pp. 26-38 ◽  
Author(s):  
Nemkumar Banthia

The improvements in the performance characteristics of cements due to carbon fiber reinforcement are described. In particular, the structure, the physical properties, the mechanical behavior, and the durability aspects of carbon–cement composites using pitch-based fibers are discussed. The various possible applications of these composites in structural and nonstructural applications are enumerated. The future research needs are identified. Key words: cements, carbon fibers, microstructure, strength, toughness, durability, applications.


2016 ◽  
Vol 45 (3) ◽  
pp. 525-539 ◽  
Author(s):  
Praveen K. Thakur ◽  
S. P. Aggarwal ◽  
G. Arun ◽  
Sahil Sood ◽  
A. Senthil Kumar ◽  
...  

2013 ◽  
Vol 7 (3) ◽  
pp. 977-986 ◽  
Author(s):  
M. Nicolaus ◽  
C. Petrich ◽  
S. R. Hudson ◽  
M. A. Granskog

Abstract. The amount of solar radiation transmitted through Arctic sea ice is determined by the thickness and physical properties of snow and sea ice. Light transmittance is highly variable in space and time since thickness and physical properties of snow and sea ice are highly heterogeneous on variable time and length scales. We present field measurements of under-ice irradiance along transects under undeformed land-fast sea ice at Barrow, Alaska (March, May, and June 2010). The measurements were performed with a spectral radiometer mounted on a floating under-ice sled. The objective was to quantify the spatial variability of light transmittance through snow and sea ice, and to compare this variability along its seasonal evolution. Along with optical measurements, snow depth, sea ice thickness, and freeboard were recorded, and ice cores were analyzed for chlorophyll a and particulate matter. Our results show that snow cover variability prior to onset of snow melt causes as much relative spatial variability of light transmittance as the contrast of ponded and white ice during summer. Both before and after melt onset, measured transmittances fell in a range from one third to three times the mean value. In addition, we found a twentyfold increase of light transmittance as a result of partial snowmelt, showing the seasonal evolution of transmittance through sea ice far exceeds the spatial variability. However, prior melt onset, light transmittance was time invariant and differences in under-ice irradiance were directly related to the spatial variability of the snow cover.


2020 ◽  
Author(s):  
Petr Bogorodskii ◽  
Vasilii Kustov ◽  
Tuomas Laurila

<p>Sea ice, as a rule, is covered with a heat-insulating snow cover, consisting of an ice skeleton and air-saturated pores. However, the temperature difference between the sea and the atmosphere during the cold season provides favorable conditions for macroscopic air movement, which significantly reduces the thermal resistance of snow and, thereby, affects the thermal and dynamic interaction of the atmosphere with the upper layers of the sea.</p><p>Actual snow cover accumulating on the surface of sea ice has significant heterogeneity and anisotropy of geometric and thermophysical characteristics conditioned by snow density stratification. Our work is aimed to studying the occurrence of convective instability in a system of two porous layers with permeable common boundary for boundary conditions taking into account the oceanographic aspect of the problem. The analytical solution of the problem in the Darcy-Boussinesq approximation is obtained by the Galerkin method, by selecting approximations of the vertical amplitudes of dimensionless temperature and velocity perturbations that satisfy the boundary conditions of the problem. A qualitative originality of the problem is revealed in comparison with a similar problem for a homogeneous porous layer. It is shown that the stability criteria (critical filtering Rayleigh numbers) due to the difference in the thermophysical and structural properties (coefficients of thermal conductivity, porosity and air permeability) of the layers can significantly differ from each other. According to detailed measurements of the thermal structure and metric characteristics of the fixed snow-ice cover in Amba Bay (Shokalsky Strait, Severnaya Zemlya Archipelago) during Winter 2015-2016, as well as calculations of its thermodynamic evolution, the values and temporal variability of the Rayleigh numbers are estimated. By comparing the observational and modeling data, the reality of the existence of a convective heat transfer regime in the snow cover is revealed. It is concluded that it is necessary to take into account its contribution to the thermal and mass balance of sea ice during winter period.</p>


Sign in / Sign up

Export Citation Format

Share Document