SYNTHESIS OF STATICALLY DETERMINED ISOTROPIC PARALLEL MANIPULATORS OF THE PANTOPTERON TYPE

Author(s):  
Andrey Tolstosheev ◽  
Vyacheslav Tatarincev

Isotropic parallel manipulators are considered. The analysis of the structure and kinematics of the parallel translational directional manipulator Pantopteron is carried out. It was found that the Pantopteron mechanism, in the kinematic chain of which pantographs are included in order to increase the speed, contains redundant links and is statically indeterminate. Structural schemes of statically definable parallel manipulators of the Pantopteron type have been developed and proposed.

Author(s):  
Roberto Simoni ◽  
Henrique Simas ◽  
Daniel Martins

This paper presents an application of symmetry and connectivity to select kinematic structures of parallel manipulators. One kinematic chain can originate several mechanisms and each mechanism can originate several parallel manipulators and, in early stages of conceptual design, it is difficult to decide what is the most promising one. Hunt [1] introduced the concept of connectivity and, since then, the connectivity has been used as an important parameter to select the most appropriated parallel manipulators to develop determined task. However, it is difficult to analyze non isomorphic parallel manipulators from the connectivity matrix. In this sense, in this paper, we apply symmetry to reduce the set of parallel manipulators to a manageable few with the desired connectivity. As a result, all promising parallel manipulators originating from a kinematic chain can be analyzed without isomorphisms.


2004 ◽  
Vol 126 (1) ◽  
pp. 101-108 ◽  
Author(s):  
Xianwen Kong ◽  
Cle´ment M. Gosselin

A spherical parallel manipulator (SPM) refers to a 3-DOF (degree-of-freedom) parallel manipulator generating 3-DOF spherical motion. A method is proposed for the type synthesis of SPMs based on screw theory. The wrench systems of a spherical parallel kinematic chain (SPKC) and its legs are first analyzed. A general procedure is then proposed for the type synthesis of SPMs. The type synthesis of legs for SPKCs, the type synthesis of SPKCs, as well as the selection of inputs of SPMs are dealt with in sequence. An input validity condition of SPMs is proposed. SPKCs with and without inactive joints are synthesized. The number of overconstraints of each SPKC is also given. The phenomenon of dependent joint groups in an SPKC is revealed for the first time.


Robotica ◽  
2019 ◽  
Vol 38 (8) ◽  
pp. 1381-1399 ◽  
Author(s):  
Huiping Shen ◽  
Ting-Li Yang ◽  
Ju Li ◽  
Dan Zhang ◽  
Jiaming Deng ◽  
...  

SUMMARYThe topological structure of a parallel manipulator (PM) determines its intrinsic topological properties (TPs). The TPs further determine essential kinematic and dynamic properties of the mechanism. TPs can be expressed through topological characteristics indexes (TCI). Therefore, defining a set of TCIs is an important issue to evaluate the TPs of PMs. This article addresses the evaluation of topological properties (ETP) of PMs based on TCI. A general and effective ETP method for PMs is proposed. Firstly, 12 TCIs are proposed, including 8 quantitative TCIs, that is, position and orientation characteristics sets (POC), dimension of the POC set, degrees of freedom (DOF), number of independent displacement equations, types and number of an Assur kinematic chain (AKC), coupling degrees of the AKCs, degrees of redundancy and the number of overs; as well as 4 qualitative TCIs, that is, selection of actuated joints, identification of inactive joints, DOF type and Input–Output motion decoupling. Secondly, the ETP method is illustrated by evaluating some well-known PMs including the Delta, Tricept, Exechon, Z3, H4 and the Gough–Stewart platform manipulators, as well as 28 other typical PMs. Via the ETP analysis of these mechanisms also some valuable design knowledge is derived and guidelines for the design of PMs are established. Finally, a 5-DOF decoupled hybrid spraying robot is developed by applying the design knowledge and the design guidelines derived from the ETP analysis.


Author(s):  
J J Cervantes-Sánchez ◽  
J M Rico-Martínez ◽  
G González-Montiel ◽  
E J González-Galván

This article presents a novel and original formula for the higher-order time derivatives, and also for the partial derivatives of screws, which are successively computed in terms of Lie products, thus leading to the automation of the differentiation process. Through the process and, due to the pure geometric nature of the derivation approach, an enlightening physical interpretation of several screw derivatives is accomplished. Important applications for the proposed formula include higher-order kinematic analysis of open and closed kinematic chains and also the kinematic synthesis of serial and parallel manipulators. More specifically, the existence of a natural relationship is shown between the differential calculus of screws and the Lie subalgebras associated with the expected finite displacements of the end effector of an open kinematic chain. In this regard, a simple and comprehensible methodology is obtained, which considerably reduces the abstraction level frequently required when one resorts to more abstract concepts, such as Lie groups or Lie subalgebras; thus keeping the required mathematical background to the extent that is strictly necessary for kinematic purposes. Furthermore, by following the approach proposed in this article, the elements of Lie subalgebra arise in a natural way — due to the corresponding changes in screws through time — and they also have the typical shape of the so-called ordered Lie products that characterize those screws that are compatible with the feasible joint displacements of an arbitrary serial manipulator. Finally, several application examples — involving typical, serial manipulators — are presented in order to prove the feasibility and validity of the proposed method.


Author(s):  
Xianwen Kong ◽  
Clément M. Gosselin

Abstract The complexity of the forward displacement analysis (FDA) of 6-SPS parallel manipulators1 varies to a great extent with the change of their geometric parameters. This paper presents a classification of the 6-SPS parallel manipulators according to their components. At first, we give the components for the 6-SPS parallel manipulator. A component refers to a part of the 6-SPS kinematic chain in which the number of actuators is equivalent to the degree of freedom. In addition to the commonly used rigid bodies, points and (straight) lines are also taken as elements of the components. Type synthesis of the 6-SPS parallel manipulators is then performed. The influence of the types of components on the maximal numbers of configurations and the degrees of the characteristic polynomials of the 6-SPS parallel manipulators is then revealed. The number of redundant sensors needed to reduce the FDA of 6-SPS parallel manipulators to the solution of several univariate quadratic equations in sequence based on the component method is also presented.


2012 ◽  
Vol 4 (3) ◽  
Author(s):  
André Gallant ◽  
Roger Boudreau ◽  
Marise Gallant

In this work, a method is presented to geometrically determine the dexterous workspace boundary of kinematically redundant n-PRRR (n-PRRR indicates that the manipulator consists of n serial kinematic chains that connect the base to the end-effector. Each chain is composed of two actuated (therefore underlined) joints and two passive revolute joints. P indicates a prismatic joint while R indicates a revolute joint.) planar parallel manipulators. The dexterous workspace of each nonredundant RRR kinematic chain is first determined using a four-bar mechanism analogy. The effect of the prismatic actuator is then considered to yield the workspace of each PRRR kinematic chain. The intersection of the dexterous workspaces of all the kinematic chains is then obtained to determine the dexterous workspace of the planar n-PRRR manipulator. The Gauss divergence theorem applied to planar surfaces is implemented to compute the total dexterous workspace area. Finally, two examples are shown to demonstrate applications of the method.


Robotica ◽  
2009 ◽  
Vol 27 (4) ◽  
pp. 589-597 ◽  
Author(s):  
Roberto Simoni ◽  
Andrea Piga Carboni ◽  
Daniel Martins

SUMMARYIn this paper, we present a new method of enumeration of parallel manipulators with one end-effector. The method consists of enumerating all the manipulators possible with one end-effector that a single kinematic chain can originate. A very useful simplification for kinematic chain, mechanism and manipulator enumeration is their representation through graphs. The method is based on group theory where abstract structures are used to capture the internal symmetry of a structure in the form of automorphisms of a group. The concept used is orbits of the group of automorphisms of a colored vertex graph. The theory and some examples are presented to illustrate the method.


Author(s):  
A Campos ◽  
R Guenther ◽  
D Martins

This article introduces the concept of Assur virtual chains and its applications in differential kinematics of parallel manipulators. Using Assur virtual chains, the differential kinematics has a simple matricial formulation and the choice between direct and inverse kinematics is reduced to select primary variables in a homogeneous linear system. Assur virtual chains are also useful for obtaining information about the relative movements or to imposing particular kinematic constraints between two links of a kinematic chain. Additionally, a new systematic algorithm is established to analytically eliminate passive joint velocities and calculate the Jacobian matrices. This elimination approach is based on screw theory concepts such as twist, wrench, and reciprocity; also, graph theory is used for kinematic chain representation. At the end of the article, the method is applied to a 3RRR planar parallel manipulator and a general universal-prismatic-spheric Stewart—Gough platform.


Machines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 7
Author(s):  
Tommaso Marchi ◽  
Giovanni Mottola ◽  
Josep M. Porta ◽  
Federico Thomas ◽  
Marco Carricato

Parallel robots with configurable platforms are a class of robots in which the end-effector has an inner mobility, so that its overall shape can be reconfigured: in most cases, the end-effector is thus a closed-loop kinematic chain composed of rigid links. These robots have a greater flexibility in their motion and control with respect to rigid-platform parallel architectures, but their kinematics is more challenging to analyze. In our work, we consider n-RRR planar configurable robots, in which the end-effector is a chain composed of n links and revolute joints, and is controlled by n rotary actuators located on the base of the mechanism. In particular, we study the geometrical design of such robots and their direct and inverse kinematics for n=4, n=5 and n=6; we employ the bilateration method, which can simplify the kinematic analysis and allows us to generalize the approach and the results obtained for the 3-RRR mechanism to n-RRR robots (with n>3). Then, we study the singularity configurations of these robot architectures. Finally, we present the results from experimental tests that have been performed on a 5–RRR robot prototype.


2018 ◽  
Vol 10 (5) ◽  
Author(s):  
Jaime Gallardo-Alvarado ◽  
Ramon Rodriguez-Castro

In this work, a new parallel manipulator with multiple operation modes is introduced. The proposed robot is based on a three-degrees-of-freedom (3DOF) parallel manipulator endowed with a three-dof central kinematic chain, where by blocking some specific kinematic pairs, the robot can modify its mobility. Hence, the robot manipulator is able to assume the role of a limited-dof or a nonredundant parallel manipulator. Without loss of generality, the instantaneous kinematics of one member of the family of parallel manipulators generated by the reconfigurable parallel manipulator, the three-RPRRC + RRPRU nonredundant parallel manipulator with decoupled motions, is approached by means of the theory of screws. For the sake of completeness, the finite kinematics of the robot is also investigated. Numerical examples are included with the purpose to clarify the method of kinematic analysis.


Sign in / Sign up

Export Citation Format

Share Document