lubricating material
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 13)

H-INDEX

6
(FIVE YEARS 3)

2022 ◽  
Vol 12 (2) ◽  
pp. 599
Author(s):  
Jian Wang ◽  
Tianxia Liu

The homemade soot capture device was used to burn Fischer-Tropsch synthetic diesel (F-T diesel) in order to simulate the combustion of F-T diesel in the engine and collect its soot (F-T DS, FS). The zinc-iron hydrotalcite (ZnFe-LDH) and the composite materials of FS and ZnFe-LDH (F-T DS/ZnFe-LDH, FS/ZnFe-LDH) were prepared by hydrothermal synthesis, and the similarities and differences in tribological characteristics of the above three lubricating materials such as 10# white oil (10# WO) lubricant additives were investigated. FS is an aggregation composed of amorphous carbon and graphite microcrystals. ZnFe-LDH is mainly composed of nanosheets, Zn, and Fe hydroxide particles, with a high degree of crystallization, while FS/ZnFe-LDH is a “sandwich layer” composed of nanosheets and soot particles. Because of the addition of cetyltrimethylammonium bromide and the grafting of a long carbon chain lipophilic group in the preparation process, FS/ZnFe-LDH has better anti-wear properties than the FS and ZnFe-LDH Effect. When FS/ZnFe-LDH is added at 0.2 wt.%, the average friction coefficient (AFC) and average wears scar diameter (AWSD) are at their lowest. Compared with pure 10# WO, the minimum values of AFC and AWSD have dropped by 36.84% and 22.58%, respectively. XPS analysis of the wear scar surface shows that when ZnFe-LDH and FS/ZnFe-LDH are used as lubricating additives of 10# WO, together with the organic matter in the white oil and the iron element in the friction pair, tribochemistry occurs under the combined action of the adsorption force and the tribochemical reaction, a friction protection film containing four elements of C, O, Fe, and Zn is formed on the surface of the wear scar, which effectively reduces the wear and reduces the friction coefficient.


2021 ◽  
pp. 129654
Author(s):  
M. Venkatesh ◽  
J. Ashokraj ◽  
P. Raghu Babu ◽  
K.J. Sreeram ◽  
M. Suguna Lakshmi

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xuan Hao ◽  
Jinfeng Liu ◽  
Imran Ali ◽  
Hongyuan Luo ◽  
Yanqiang Han ◽  
...  

AbstractWith the rapid growth of energy demand and the depletion of existing energy resources, the new materials with superior performances, low costs and environmental friendliness for energy production and storage are explored. Di-p-tolyl disulfide (p-Tol2S2) is a typical lubricating material, which has been applied in the field of energy storage. The conformational properties and phase transformations of p-Tol2S2 have been studied by pioneers, but their polymorphs and the polymorphism induced crystal structure changes require further analysis. In this study, we perform the crystal structural screening, prediction and optimization of p-Tol2S2 crystal with quantum mechanical calculations, i.e., density functional theory (DFT) and second-order Møller–Plesset perturbation (MP2) methods. A series of crystal structures with different molecular arrangements are generated based on the crystal structure screening. As compared to long-established lattice energy calculation, we take an advantage of using more accurate technique, which is Gibbs free energy calculation. It considers the effects of entropy and temperature to predict the crystal structures and energy landscape. By comparing the Gibbs free energies between predicted and experimental structures, we found that phase α is the most stable structure for p-Tol2S2 crystal at ambient temperature and standard atmospheric pressure. Furthermore, we provide an efficient method to discriminate different polymorphs that are otherwise difficult to be identified based on the Raman/IR spectra. The proposed work enable us to evaluate the quality of various crystal polymorphs rapidly.


Author(s):  
V. R. Edigarov

The technology of combined electromechanical treatment with profile rolling is presented, which is a combination of electromechanical treatment and surface plastic deformation, which allows to create on the surface directed regular microrelief. The proposed technology is tested during processing of parts of multipurpose tracked and wheeled machines operating under difficult loading conditions, signalternating dynamic loads, often with limited lubricant or presence of abrasive in its composition. Reasonable selection of relief (pattern) of treated surface makes it possible to maximize retention of lubricating material in zone of tribocontact, as well as to increase wear resistance of parts and to create residual compression stresses in surface layer. The mechanical properties of the surface layer of the sample with a strengthened geometric pattern by changing the microhardness of the smoothed surface and oil pockets (channels) obtained by surface plastic deformation were examined. Electromechanical treatment by rolling the profile makes it possible to create on the surface a strengthened surface layer with naturally varying parameters with the specified regular micro-relief including oil pockets (channels) and reinforced tracks, at the same time considerable increase of wear resistance of triboscreating is provided.


2020 ◽  
Vol 39 (1) ◽  
pp. 45-53 ◽  
Author(s):  
Siwen Tang ◽  
Rui Wang ◽  
Pengfei Liu ◽  
Qiulin Niu ◽  
Guoqing Yang ◽  
...  

AbstractWith the concern of the environment, green dry cutting technology is getting more and more attention and self-lubricating tool technology plays an important role in dry cutting. Due to the demand for high temperature performance of tools during dry cutting process, cemented carbide with Ni3Al as the binder phase has received extensive attention due to its excellent high temperature strength and high temperature oxidation resistance. In this paper, WC-TiC-Ni3Al-CaF2 graded self-lubricating material and tools were prepared by microwave heating method, and its microstructure, mechanical properties and cutting performance were studied. Results show that gradient self-lubricating material can be quickly prepared by microwave heating technology, and the strength is equivalent to that of conventional heating technology. CaF2 not only plays a role in self-lubrication, but also refines the grain of the material. A reasonable gradient design can improve the mechanical properties of the material. When the gradient distribution exponent is n1 = 2, the material has high mechanical properties. Cutting experiments show that the WC-TiC-Ni3Al-CaF2 functional gradient self-lubricating tool has better cutting performance than the homogeneous WC-TiC-Ni3Al hard alloys.


Polymers are being used in many industrial applications. Among them PTFE is very popular as it is a self-lubricating material. In this work it is combined in different percentages of weight with alumina (0,5,10,15,20). Samples were prepared by powder metallurgy technique. Wear tests were performed for various loads of 20,30,40 N with varying percentages of reinforcement and at two speeds of 170rpm and 190 rpm. Shore D hardness was measured for different samples. From the experimentation it was found that less wear volume and friction force was registered at 15% and 20% reinforced composites respectively, whereas high toughness was observed at 15% reinforcement.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Dan Jia ◽  
Haitao Duan ◽  
Shengpeng Zhan ◽  
Yongliang Jin ◽  
Bingxue Cheng ◽  
...  

AbstractLong developing period and cumbersome evaluation for the lubricating materials performance seriously jeopardize the successful development and application of any database system in tribological field. Such major setback can be solved effectively by implementing approaches with high throughput calculation. However, it often involves with vast number of output files, which are computed on the basis of first principle computation, having different data format from that of their experimental counterparts. Commonly, the input, storage and management of first principle calculation files and their individually test counterparts, implementing fast query and display in the database, adding to the use of physical parameters, as predicted with the performance estimated by first principle approach, may solve such setbacks. Investigation is thus performed for establishing database website specifically for lubricating materials, which satisfies both data: (i) as calculated on the basis of first principles and (ii) as obtained by practical experiment. It further explores preliminarily the likely relationship between calculated physical parameters of lubricating oil and its respectively tribological and anti-oxidative performance as predicted by lubricant machine learning model. Success of the method facilitates in instructing the obtainment of optimal design, preparation and application for any new lubricating material so that accomplishment of high performance is possible.


2019 ◽  
Vol 822 ◽  
pp. 684-689
Author(s):  
Alexey Leonidovich Steshenkov ◽  
Sergey Georgievich Chulkin ◽  
Aleksey Aleksandrovich Alkhimenko ◽  
Sergey D. Shaitor ◽  
Konstantin Dmitrievich Bogatyrev ◽  
...  

The paper presents studies of the Vickers hardness of various areas of steel friction surfaces, on which normal and adhesive types of wear were observed after the process of friction in the environment of the lubricant of various grades. Implemented a comparison of the friction surface hardness with the original surface. It is shown that the hardness varies in the process of friction and has different values ​​depending on the lubricating medium and the type of wear.


Sign in / Sign up

Export Citation Format

Share Document