Bromocresol Green TS

Keyword(s):  
2012 ◽  
Vol 18 (2) ◽  
pp. 339-347 ◽  
Author(s):  
Sameer Abdulrahman ◽  
Kanakapura Basavaiah

Two simple, sensitive and extraction-free spectrophotometric methods are described for the determination of dothiepin hydrochloride (DOTH) both in pure form and in pharmaceutical tablets. The methods are based on ion-pair complex formation between dothiepin base (DOT) and two acidic dyes, namely, bromophenol blue (BPB) or bromocresol green (BCG) with absorption maximum at 425 nm for BPB method or 430 nm for BCG method. Beer?s law is obeyed over the concentration ranges of 1.0-15.0 and 1.0-17.5 ?g mL-1 DOT for BPB and BCG methods, respectively. The molar absorptivity values and Sandell?s sensitivity values are reported for both methods. The limits of detection (LOD) and quantification (LOQ) were calculated to be 0.18 and 0.53 ?g mL-1 for BPB method, and 0.17 and 0.50 ?g mL-1 for BCG method, respectively. The stoichiometry of the complex in either case was found to be 1: 1 and the conditional stability constant (KF) of the complexes has also been calculated. The proposed methods were applied successfully to the determination of DOTH in pure form and in its tablet form with good accuracy and precision. Statistical comparison of the results was performed using Student's t-test and variance ratio F-test at 95% confidence level and there was no significant difference between the official and proposed methods with regard to accuracy and precision. Further, the validity of the proposed methods was confirmed by recovery studies via standard addition technique.


2020 ◽  
Author(s):  
Katharina Seelmann ◽  
Martha Gledhill ◽  
Steffen Aßmann ◽  
Arne Körtzinger

Abstract. Due to its accurate and precise character, the spectrophotometric pH detection is a common technique applied in measurement methods for carbonate system parameters. However, impurities in the used pH indicator dyes can influence the measurements quality. The work described here focuses on influences from impurities in the pH indicator dye bromocresol green (BCG) on spectrophotometric seawater total alkalinity (AT) measurements. First, a high-performance liquid chromatography (HPLC) purification method for BCG was developed. A subsequent analysis of BCG dye from four different vendors with this method revealed different types and quantities of impurities. After successful purification, AT measurements with purified and unpurified BCG were carried out using the novel autonomous analyzer CONTROS HydroFIA® TA. Long-term measurements in the laboratory revealed a direct influence of impurity types and quantities on the drift behavior of the analyzer. The purer the BCG, the smaller was the drift increment per measurement. Furthermore, we could show that a certain impurity in some indicator dyes changed the drift pattern from linear to non-linear, which can impair the AT measurements during a long-term deployment of the system. Laboratory performance characterization experiments revealed no improvement of the measurement quality (precision and accuracy) by using purified BCG as long as the impurities of the unpurified dye do not exceed a quantity of 2 % (relationship of peak areas in the chromatogram). However, BCG with impurity quantities higher than 6 % provided AT values, which failed fundamental quality requirements. Concluding, to gain optimal AT measurements, an indicator purification is not necessarily required as long as the purchased dye has a purity level of at least 98 %.


2007 ◽  
Vol 42 (8) ◽  
pp. 1901-1911 ◽  
Author(s):  
Yujuan Lu ◽  
Bo Wei ◽  
Ye Wang ◽  
Jizhen Li
Keyword(s):  

1995 ◽  
Vol 72 (6) ◽  
pp. A118
Author(s):  
John Zimmer ◽  
James Reeves ◽  
Rebecca Jones ◽  
Kirk Cizerle ◽  
Dick Ward

1975 ◽  
Vol 28 (4) ◽  
pp. 339 ◽  
Author(s):  
Alan G Clark ◽  
KarI M Rogers

The kinetics of the biliary excretion of both bromocresol green and amaranth are better described in terms of rate equations that are functions of the cumulative volume of bile excreted rather than of time. The rate of disappearance of bromocresol green from the liver also appears to depend on the volume of bile excreted rather than on time. It is proposed that bromocresol green, and probably also amaranth, rapidly equilibrates between the hepatic and biliary compartments as a result of reabsorption from the biliary tree and that the rate-limiting factor in the biliary excretion of these dyes is the removal of dye from the biliary tree by bulk flow.


Chemosensors ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 30 ◽  
Author(s):  
Vladimír Pitschmann ◽  
Lukáš Matějovský ◽  
Kamila Lunerová ◽  
Michal Dymák ◽  
Martin Urban ◽  
...  

This work provides a summary of our results in the area of the experimental development of detection paper for the detection of liquid phase chemical warfare agents (drops, aerosol), the presence of which is demonstrated by the development of characteristic coloring visible to the naked eye. The basis of the detection paper is a cellulose carrier saturated with the dithienobenzotropone monomer (RM1a)–chromogenic chemosensor sensitive to nerve agents of the G type, blister agent lewisite, or choking agent diphosgene. We achieve a higher coloring brilliance and the limit certain interferences by using this chemosensor in the mix of the o-phenylendiamine-pyronine (PY-OPD). We prove that the addition of the Bromocresol Green pH indicator even enables detection of nerve agents of the V type, or, nitrogen mustards, while keeping a high stability of the detection paper and its functions for other chemical warfare agents. We resolve the resistance against the undesirable influence of water by providing a hydrophobic treatment of the carrier surface.


Sign in / Sign up

Export Citation Format

Share Document