scholarly journals Dependence upon Bile Volume of the Biliary Excretion of Bromocresol Green and Amaranth in the Anaesthetized Rat

1975 ◽  
Vol 28 (4) ◽  
pp. 339 ◽  
Author(s):  
Alan G Clark ◽  
KarI M Rogers

The kinetics of the biliary excretion of both bromocresol green and amaranth are better described in terms of rate equations that are functions of the cumulative volume of bile excreted rather than of time. The rate of disappearance of bromocresol green from the liver also appears to depend on the volume of bile excreted rather than on time. It is proposed that bromocresol green, and probably also amaranth, rapidly equilibrates between the hepatic and biliary compartments as a result of reabsorption from the biliary tree and that the rate-limiting factor in the biliary excretion of these dyes is the removal of dye from the biliary tree by bulk flow.

2020 ◽  
Author(s):  
Sushil Pangeni ◽  
Jigneshkumar Dahyabhai Prajapati ◽  
Jayesh Arun Bafna ◽  
Nilam Mohamed ◽  
Werner M. Nau ◽  
...  

Quantifying the passage of the large peptide protamine (Ptm) across CymA, a passive channel for cyclodextrin uptake, is in the focus of this study. Using a reporter-pair based fluorescence membrane assay we detected the entry of Ptm into liposomes containing CymA. The kinetics of the Ptm entry was independent of its concentration suggesting that the permeation across CymA is the rate-limiting factor. Furthermore, we reconstituted single CymA channels into planar lipid bilayers and recorded the ion current fluctuations in the presence of Ptm. To this end, we were able to resolve the voltage-dependent entry of single Ptm peptide molecules into the channel. Extrapolation to zero voltage revealed about 1-2 events per second and long dwell times, in agreement with the liposome study. Applied-field and steered molecular dynamics simulations provided an atomistic view on the permeation. It can be concluded that a concentration gradient of 1 M Ptm leads to a translocation rate of about 1 molecule per second and per channel.


1994 ◽  
Vol 267 (5) ◽  
pp. H1759-H1769 ◽  
Author(s):  
X. Wang ◽  
A. J. Levi ◽  
A. P. Halestrap

The pH-sensitive fluorescent indicator 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF) was used to measure lactate transport in single cardiac myocytes. Addition of lactate externally caused a rapid fall of intracellular pH (pHi), which was largely inhibited by 5 mM alpha-cyano-4-hydroxycinnamate (CHC), a specific inhibitor of the lactate carrier. Stilbene disulfonates such as 4,4'-dibenzamidostilbene-2,2'-disulfonate (DBDS) only partially inhibited the response, with inhibition being greater in guinea pig than rat myocytes. The data are consistent with two isoforms of the lactate carrier, one sensitive and one insensitive to DBDS, coexisting within a single myocyte and both having a stoichiometry of 1 lactate:1 proton. The initial rate of pHi fall was used to determine carrier kinetics. Rat myocytes had a Michaelis constant (Km) for external L-lactate of 2.74 mM and a Km for external pyruvate of 0.2 mM. Guinea pig cells had a Km for external L-lactate of 2.2 mM. Kinetics of lactate efflux were also evaluated using the rate of pHi recovery on removing external lactate. The Km and maximal rate values for efflux were both threefold higher than for influx and were related to each other and the transmembrane pH gradient as predicted by the Haldane relationship. It is suggested that under hypoxic conditions, the carrier may be the rate-limiting factor for lactate extrusion.


2002 ◽  
Vol 45 (10) ◽  
pp. 99-104 ◽  
Author(s):  
W.T.M. Sanders ◽  
G. Zeeman ◽  
G. Lettinga

In this paper, the relation between the hydrolysis rate of dissolved polymer substrates and sludge concentration was investigated in two ways, viz. by laboratory experiments and by computer simulations. In the simulations, the hydrolysis of dissolved polymer components was regarded as a general depolymerisation process in which the bonds of the parent molecule break randomly until only monomer and dimer components remain. The results illustrate that for the hydrolysis of dissolved polymer substrates the enzyme activity is the rate-limiting factor. Moreover, a general depolymerisation process can describe the enzymatic hydrolysis of these components.


2020 ◽  
Author(s):  
Sushil Pangeni ◽  
Jigneshkumar Dahyabhai Prajapati ◽  
Jayesh Arun Bafna ◽  
Nilam Mohamed ◽  
Werner M. Nau ◽  
...  

Quantifying the passage of the large peptide protamine (Ptm) across CymA, a passive channel for cyclodextrin uptake, is in the focus of this study. Using a reporter-pair based fluorescence membrane assay we detected the entry of Ptm into liposomes containing CymA. The kinetics of the Ptm entry was independent of its concentration suggesting that the permeation across CymA is the rate-limiting factor. Furthermore, we reconstituted single CymA channels into planar lipid bilayers and recorded the ion current fluctuations in the presence of Ptm. To this end, we were able to resolve the voltage-dependent entry of single Ptm peptide molecules into the channel. Extrapolation to zero voltage revealed about 1-2 events per second and long dwell times, in agreement with the liposome study. Applied-field and steered molecular dynamics simulations provided an atomistic view on the permeation. It can be concluded that a concentration gradient of 1 M Ptm leads to a translocation rate of about 1 molecule per second and per channel.


1981 ◽  
Vol 20 (02) ◽  
pp. 90-93
Author(s):  
P.B. Parab ◽  
U.R. Raikar ◽  
R.D. Ganatra ◽  
M. C. Patel

Phenolphthalexon, a compound with iminodiacetic acid as a functional group, has been labelled with 113mIn to high chemical purity and its usefulness in studies of biliary excretion patency has been studied. Organ distribution of 113mIn-phenolphthalexon in mice was characterized by high liver uptake (50.8% of the administered dose after 5 min) and rapid clearance through the gall bladder. An animal model for studying obstruction of biliary excretion has been developed. Data on the kinetics of the radiopharmaceutical were obtained by collecting in-vivo data through an on-line computer.


1979 ◽  
Vol 44 (3) ◽  
pp. 912-917 ◽  
Author(s):  
Vladimír Macháček ◽  
Said A. El-bahai ◽  
Vojeslav Štěrba

Kinetics of formation of 2-imino-4-thiazolidone from S-ethoxycarbonylmethylisothiouronium chloride has been studied in aqueous buffers and dilute hydrochloric acid. The reaction is subject to general base catalysis, the β value being 0.65. Its rate limiting step consists in acid-catalyzed splitting off of ethoxide ion from dipolar tetrahedral intermediate. At pH < 2 formation of this intermediate becomes rate-limiting; rate constant of its formation is 2 . 104 s-1.


1991 ◽  
Vol 56 (8) ◽  
pp. 1701-1710 ◽  
Author(s):  
Jaromír Kaválek ◽  
Vladimír Macháček ◽  
Miloš Sedlák ◽  
Vojeslav Štěrba

The cyclization kinetics of N-(2-methylcarbonylphenyl)-N’-methylsulfonamide (IIb) into 3-methyl-(1H)-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide (Ib) has been studied in ethanolamine, morpholine, and butylamine buffers and in potassium hydroxide solution. The cyclization is subject to general base and general acid catalysis. The value of the Bronsted coefficient β is about 0.1, which indicates that splitting off of the proton from negatively charged tetrahedral intermediate represents the rate-limiting and thermodynamically favourable step. In the solutions of potassium hydroxide the cyclization of dianion of the starting ester IIb probably becomes the rate-limiting step.


1985 ◽  
Vol 248 (5) ◽  
pp. C498-C509 ◽  
Author(s):  
D. Restrepo ◽  
G. A. Kimmich

Zero-trans kinetics of Na+-sugar cotransport were investigated. Sugar influx was measured at various sodium and sugar concentrations in K+-loaded cells treated with rotenone and valinomycin. Sugar influx follows Michaelis-Menten kinetics as a function of sugar concentration but not as a function of Na+ concentration. Nine models with 1:1 or 2:1 sodium:sugar stoichiometry were considered. The flux equations for these models were solved assuming steady-state distribution of carrier forms and that translocation across the membrane is rate limiting. Classical enzyme kinetic methods and a least-squares fit of flux equations to the experimental data were used to assess the fit of the different models. Four models can be discarded on this basis. Of the remaining models, we discard two on the basis of the trans sodium dependence and the coupling stoichiometry [G. A. Kimmich and J. Randles, Am. J. Physiol. 247 (Cell Physiol. 16): C74-C82, 1984]. The remaining models are terter ordered mechanisms with sodium debinding first at the trans side. If transfer across the membrane is rate limiting, the binding order can be determined to be sodium:sugar:sodium.


1983 ◽  
Vol 64 (1) ◽  
pp. 85-90 ◽  
Author(s):  
Maurizio Muraca ◽  
Jan De Groote ◽  
Johan Fevery

1. Hepatic bilirubin UDP-glucuronosyltransferase activity was higher in female than in male rats; gonadectomy decreased enzyme activity in females and increased it in males. This sex difference in bilirubin conjugation was further used to evaluate the effect of differences in conjugation on the maximal biliary excretion of bilirubin in the non-anaesthetized rat. 2. After infusion of bilirubin, the maximal biliary excretory rate (Tm) and maximal concentration of bilirubin in bile were respectively 70% and 40% higher in female than in male rats; these values were decreased in females after ovariectomy and increased in males after orchiectomy. A linear relationship was found (r = 0.86; P < 0.001) between bilirubin Tm and hepatic bilirubin UDP-glucuronosyltransferase activity in the four groups of rats, suggesting that conjugation was the rate-limiting step for the maximal hepatic transport of bilirubin. 3. At the end of bilirubin infusion, bilirubin conjugates in serum, determined by alkaline methanolysis and high-performance liquid chromatography, ranged from 0.5 to 1.4% of total bilirubin. Therefore no significant reflux of conjugated bilirubin occurred during saturation of the hepatic transport of the pigment, once more suggesting that the secretory step was not rate-limiting. 4. The composition of bilirubin conjugates in bile was similar in the four groups of rats, despite significant differences in transferase activity. This suggests that the relative proportion of bilirubin mono- and di-conjugates in bile is affected by factors other than transferase activity alone. Relatively more monoconjugates were excreted under the bilirubin load than in basal conditions.


Sign in / Sign up

Export Citation Format

Share Document