scholarly journals Dimensional stability and strength properties of wood plastic composites produced from sawdust of Cordia alliodora (Ruiz and Pav.)

2014 ◽  
Vol 6 (2) ◽  
pp. 338-343 ◽  
Author(s):  
D. N. Izekor ◽  
M. E. Mordi

This study evaluates the effects of densities and mixing ratio on the physical and mechanical properties of wood plastic composites boards at mixing ratio of 1:1 to 1:1.4 and nominal densities of 700kg/mm3 and 800kg/mm3. The quantity of High Density Polyethylene (HDPE) and saw dust used in the production of Wood Plastic Composites (WPCs) was weighed to a nominal density of 700kg/mm3 and 800kg/mm3. The materials were thoroughly mixed and fed into a neatly primed oil mould with a dimension of 300 x 300 x 10 mm. Test samples used for physical and mechanical properties determination were collected from each board produced from the mould. The results showed that WPCs board produced from mixing ratio 1:1 had the highest Modulus of Rupture (MOR) and Modulus of Elasticity (MOE) values of 6.52 mm N-2 and 564.95 mm N-2 respectively. Water absorption, thickness swelling and linear expansion of WPCs produced from wood/plastic ratio of 1:1.4 had the lowest mean values of 6.67, 0.83, 0.68% and 21.61, 1.33, 5.35% respectively after 2 hours and 24 hours of water immersion test. Analysis of variance carried out at 0.05% probability level showed that the effect of density and mixing ratio were significant on the physical and mechanical properties of wood plastic composites boards.

Author(s):  
Jacob Mayowa Owoyemi ◽  
Hazzan Adigun

The increase in demand for wood for various purposes has put serious pressure on Nigeria’s forest with its attendant fall in the supply of solid wood for construction purposes. As an alternative, non-woody material like banana stem fibre is being investigated for the production of Cement Bonded Particle Board (CBPB). The sorption and strength properties of CBPB from Musa spp fibre were assessed. The board samples were formed using cement to materials mixing ration of 2:1 and 3:1 and blending proportions of sawdust and banana fibre using ordinary Portland cement as a binder. Physical and Mechanical properties of boards produced from stem using were investigated. The influence of blending proportion (B.P) and mixing ratio (MR) on Density, Water Absorption (WA), Thickness Swelling (TS), Linear Expansion, Modulus of Rupture (MOR), and Modulus of Elasticity (MOE) were determined. The results of sorption properties showed that for immersion at 24, 48, and 72 hours, WA, TS, and LE decreased with an increase in mixing ratio. MOE mean values ranged between 293.65 and 2367.01 N/mm2 for 2:1 and 250.99 and 2009.28 N/mm2 for 3:1 while MOR values ranged between 2.55 and 7.592 N/mm2 for 2:1 and ranged from 0.55 to 1.40 N/mm2 for 3:1 respectively. The result proved that banana fibre is suitable for the production of panel products with enhanced strength properties.


2016 ◽  
Vol 12 (4) ◽  
pp. 211-219 ◽  
Author(s):  
Hossein Rangavar ◽  
Hamid Reza Taghiyari ◽  
Abdulrasol Oromiehie ◽  
Tahere Gholipour ◽  
Arsalan Safarpour

BioResources ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 789-804
Author(s):  
Qiang Jin ◽  
Lin Zhu ◽  
Jiedeerbieke Madiniyeti ◽  
Chunxia He ◽  
Li Li

Hydration-active steel slag and slag micropowder were used as inorganic fillers with silane coupling agent (KH550) to prepare wheat straw/polyvinyl chloride wood-plastic composites (WPCs) by extrusion molding. A 35-day immersion and a pre-immersion test were carried out to analyze the influence of steel slag and slag micropowder on the physical and mechanical properties of the WPCs under wet conditions. Results showed the following: (1) KH-550 exhibited a good surface modification effect on the activated steel slag and slag micropowder, (2) an increase in the activated steel slag and slag micropowder content could effectively reduce the percent water absorption of the WPCs by 20% to 25% and the expansion by 20% to 24%, respectively, compared with the control group, but had a limited effect on the tensile strength retention, and (3) pre-immersion could effectively induce the synergistic reinforcement effect of the active fillers, resulting in reaching the saturated water absorption within 20 days. The water absorption and tensile strength were respectively 18% to 25% lower and 1.5% to 3% higher than those of the composites without pre-immersion. The results of this study could provide experimental data and theoretical references for the influence of hydration-active inorganic fillers on WPC properties.


2011 ◽  
Vol 46 (3) ◽  
pp. 301-309 ◽  
Author(s):  
Jae Gyoung Gwon ◽  
Sun Young Lee ◽  
Sang Jin Chun ◽  
Geum Hyun Doh ◽  
Jung Hyeun Kim

2011 ◽  
Vol 471-472 ◽  
pp. 151-156 ◽  
Author(s):  
Mohd Hafizuddin Ab Ghani ◽  
Ahmad Haji Sahrim

We investigated the effects of amount of antioxidants variability on selected mechanical and physical properties of wood plastic composites. Recycled high density polyethylene (rHDPE) and natural fibers were compounded into pellets by compounder, then the pellets were extruded using co-rotating twin-screw extruder and test specimens were prepared by hot and cold press process. From the study, samples with 0.5 wt% of antioxidants produce the highest strength and elasticity of composites. The effect of antioxidants presence on water uptake is minimal.


2010 ◽  
Vol 168-170 ◽  
pp. 2106-2110
Author(s):  
Yi Qiang Wu ◽  
Chun Hua Yao ◽  
Yan Qing ◽  
Jian Xiong Lv ◽  
Yun Chu Hu

This study aimed at evaluating the physical, mechanical and thermal properties of a structural laminated veneer lumber(LVL) prepared with self-made fire-retardant NSCFR being applied to the adhesive. Cone calorimeter(CONE), thermogravimetry(TG-DTG) and universal testing machine were utilized to assess the performances. Results showed that: fire-resistant and smoke-suppression characteristics of the fire-retardant treated LVL (FRLVL)were satisfactory. The heat release rate(HRR) of it was smaller than that of the untreated wood and it did not exhibit the typical second pkHRR of wood-based materials. It had a residual mass rate of 33.32% after exposure to fire. Overall production rate of CO and CO2, average specific extinction area and average smoke rate for it were remarkably less than that of unprocessed wood. In addition, FRLVL possesses acceptable physical and mechanical properties. It showed higher density and lower thickness swell after 24h water immersion than the control group and the strength parallel to glue-line parameters in static bending----modulus of rupture(MOR), modulus of elasticity(MOE), shear strength(SS) were 38.698 Mpa ,6.376 GPa and 4.389MPa separately, all of which met the corresponding requirements for structural LVL specified in the China National Standard GB/T 20241-2006.


Sign in / Sign up

Export Citation Format

Share Document