scholarly journals Cell membrane stability- an important criterion for selection of heat tolerant genotypes in wheat (Triticum aestivum L.)

2017 ◽  
Vol 9 (4) ◽  
pp. 1894-1900
Author(s):  
Anzer Ul Islam ◽  
Ashok K. Chhabra ◽  
Satyaveer S. Dhanda ◽  
Renu Munjal

Cell membrane stability, grain filling rate, grain filling duration, canopy temperature and grain yield were used to evaluate performance of 100 diverse bread wheat (Triticum aestivum L.) genotypes under timely sown and late sown heat stress conditions for two cropping season. The genotypes differed significantly for all the traits show-ing considerable variation for improvement of characters. The genotypes WH1165 had significant high grain yield (14.6* g and 11.4g) and (11.3* g and 11.4* g) followed by cell membrane stability under timely sown and heat stress conditions, respectively indicating potential tolerance against heat stress. Correlation coefficients revealed that cell membrane stability (0.451**) and (0.639**) in timely sown and in late sown conditions, respectively were the most important trait followed by grain filling rate (0.882** and 0.744**) under timely sown and late sown conditions respec-tively. Results revealed that bread wheat genotypes which had high value of cell membrane stability had high grain yield showed potential photorespiration and high grain filling rate under heat stress condition. Twenty two genotypes WH1021, WH1155, VL803, WH787, NW1014, Raj3765, HD1869, 2042, WH1124, HD2285, WH1133, HUW234, 4066, Sonak, UP2425, UP2473, PBW503, PBW373, PBW533, SGP13, HD2643 and WH789 were identified as heat tolerant genotypes based on their relative performance in yield components, grain yield and heat susceptibility indi-ces. These genotypes were found to be ideal candidates to be used in developing heat tolerant wheat varieties. Canopy temperature, membrane thermostability and grain filling rate have also shown strong correlation with grain yield. Because of this association, these traits constitute the best available ‘tool’ for genetic improvement of wheat suitable for cultivation under heat stressed environments. Thus, these could be used as indirect selection criteria for developing heat tolerant wheat genotypes that would provide sufficient yields to meet the ever increasing wheat demand.

2015 ◽  
Vol 47 (4) ◽  
pp. 49-63 ◽  
Author(s):  
A.A. Khan ◽  
M.R. Kabir

Abstract Twenty five spring wheat genotypes were evaluated for terminal heat stress tolerance in field environments in the Agro Ecological Zone-11 of Bangladesh, during 2009-2010 cropping season. The experiments were conducted at Wheat Research Centre, Bangladesh Agricultural Research Institute, using randomized block design with three replicates under non-stress (optimum sowing) and stress (late sowing) conditions. Seven selection indices for stress tolerance including mean productivity (MP), geometric mean productivity (GMP), tolerance (TOL), yield index (YI), yield stability index (YSI), stress tolerance index (STI) and stress susceptibility index (SSI) were calculated based on grain yield of wheat under optimum and late sowing conditions. The results revealed significant variations due to genotypes for all characters in two sowing conditions. Principal component analysis revealed that the first PCA explained 0.64 of the variation with MP, GMP, YI and STI. Using MP, GMP, YI and STI, the genotypes G-05 and G-22 were found to be the best genotypes with relatively high yield and suitable for both optimum and late heat stressed conditions. The indices SSI, YSI and TOL could be useful parameters in discriminating the tolerant genotypes (G-12, G-13, and G-14) that might be recommended for heat stressed conditions. It is also concluded from the present studies that biomass, grain filling rate and spikes number m-2 are suitable for selecting the best genotypes under optimum and late sowing conditions because these parameters are highly correlated with MP, GMP, YI and STI. However, high ground cover with long pre heading stage and having high grain filling rate would made a genotype tolerant to late heat to attain a high grain yield in wheat.


HortScience ◽  
2020 ◽  
Vol 55 (9) ◽  
pp. 1446-1452 ◽  
Author(s):  
Aneela Nijabat ◽  
Adam Bolton ◽  
Muhammad Mahmood-ur-Rehman ◽  
Adeel Ijaz Shah ◽  
Rameez Hussain ◽  
...  

Heat waves occur with more regularity and they adversely affect the yield of cool season crops including carrot (Daucus carota L.). Heat stress influences various biochemical and physiological processes including cell membrane permeability. Ion leakage and increase in cell permeability are indicators of cell membrane stability and have been used to evaluate the stress tolerance response in numerous crops and inform plant breeders for improving heat tolerance. No study has been published about the effects of heat stress on cell membrane stability and relative cell injury of carrot. Therefore, the present study was designed to estimate these stress indicators in response to heat stress at the early and late seedling developmental stages of 215 diverse accessions of wild and cultivated carrot germplasm. The article identifies the relationship between early and late stages of seedling tolerance across carrot genotypes and identifies heat-tolerant genotypes for further genetic analysis. Significant genetic variation among these stress indicators was identified with cell membrane stability and relative cell injury ranging from 6.3% to 97.3% and 2.8% to 76.6% at the early seedling stage, respectively; whereas cell membrane stability and relative cell injury ranged from 2.0% to 94.0% and 2.5% to 78.5%, respectively, at the late seedling stage under heat stress. Broad-sense heritability ranged from 0.64 to 0.91 for traits of interest under study, which indicates a relatively strong contribution of genetic factors in phenotypic variation among accessions. Heat tolerance varied widely among both wild and cultivated accessions, but the incidence of tolerance was higher in cultivated carrots than in wild carrots. The cultivated carrot accessions PI 326009 (Uzbekistan), PI 451754 (Netherlands), L2450 (USA), and PI 502654 (Pakistan) were identified as the most heat-tolerant accessions with highest cell membrane stability. This is the first evaluation of cell membrane stability and relative cell injury in response to heat stress during carrot development.


2013 ◽  
Vol 12 (28) ◽  
pp. 4439-4445 ◽  
Author(s):  
Ch Girish ◽  
P ra ◽  
ey ◽  
Rane Jagadish ◽  
Sareen Sindhu ◽  
...  

Author(s):  
Amrita Kumari ◽  
R. D. Ranjan ◽  
Chandan Roy ◽  
Awadesh Kumar Pal ◽  
S. Kumar

Heat stress, particularly the stress appears at the time of flowering to grain filling stages causing severe yield loss in wheat. Heat tolerance is complex phenomena that include adjustment in morphological, physiological and biochemical traits of the crop. Present investigation was carried out to understand the effect of terminal heat stress on different traits of wheat. The experiment was conducted in three dates of sowing as timely sown, late sown and very late sown to expose the crop to heat stress at later stages of the crop growth. Significant genetic variations for all the traits evaluated under three conditions indicated the presence of variability for the traits. Trait association analysis revealed that flag leaf chlorophyll content and MSI at seedling stage; MDA at reproductive stage had direct relationship with grain yield. While under very late sown condition MDA and RWC at seedling stages were found to be highly correlated with grain yield. It indicates that MDA, RWC at seedling stage and days to booting, days to milking plays important role in very late sown condition that can be used as selection criteria in breeding programme.


Crop Science ◽  
2013 ◽  
Vol 53 (6) ◽  
pp. 2295-2303 ◽  
Author(s):  
Edmore Gasura ◽  
Peter Setimela ◽  
Richard Edema ◽  
Paul T. Gibson ◽  
Patrick Okori ◽  
...  

2021 ◽  
Vol 24 (1) ◽  
pp. 13-23
Author(s):  
S Sharmin ◽  
MA Hasan ◽  
S Sikder

Four wheat variety/genotype (BARI Gom-26, BAW-1202, BAW-1182 and BARI Gom-27) were tested under three heat stress regimes (normal, moderate and severe) to evaluate the effect of late seeding warmer condition on phenology and yield of wheat, as well as to identify suitable cultivars to develop heat-tolerant genotypes at Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur during November, 2016 to April, 2017. Results revealed that genotype BAW-1182 and BAW-1202 showed greater thermostability of cell membrane with acceptable yield performance under heat stress condition. The order of tolerance based on heat susceptibility index (based on grain yield) was BAW-1182>BAW-1202>BARI Gom-27>BARI Gom-26 under heat stress conditions. Thus, BAW-1182 and BAW-1202 have the greatest potential to be used as high-yielding wheat genotypes under warm to hot environments and could be used in a breeding programme to develop heat-tolerant wheat. Bangladesh Agron. J. 2021, 24(1): 13-23


2017 ◽  
Vol 9 (6) ◽  
pp. 142
Author(s):  
A. Elakhdar ◽  
T. Kumamaru ◽  
M. Abd El-Aty ◽  
Kh. Amer ◽  
I. Eldegwy ◽  
...  

To understand the genetic patterns of the physio-morphological traits for barley grain yield, six-generations (P1, P2, F1, F2, BC1, and BC2) were used to determine the type of gene action in the four barley crosses. Grain yield showed a strong positive association (r = 0.83 and 1) with Grain Filling Rate in Giza121/RIL1 and Giza126/RIL2 crosses, respectively. The relationship between yield and earliness was not consistent with crosses and positive (r) values were quite low. It should be possible to select early-maturing and high-yielding segregates with high 100- kernel weight. The results indicated that the dominance effect [dd] was more important and greater than the additive effect [aa] and [ad] for most traits. Positive heterosis over the mid- and better- parent was quite similar for the most traits, except for heading and maturity dates, that showed negative heterotic effects. The inbreeding depression was high significant and positive for Grain Filling Rate, chlorophyll contents, Flag Leaf area and 100- kernel weight. On the other hand, it was a negatively significant for the earliness trait (HD, MD, and GFP). The lack of uniformity for estimates of inbreeding depression can be explained by environmental variation and to its influence on the type of gene action. Narrow-sense heritability ranged from 13.3% for Grain Filling Period in Giza12/RIL1 to 66.6% for heading dates in Giza121/RIL2 crosses. Genetic advance estimates were low due to lack of additive variance. The crosses Giza121/RIL1 and Giza126/RIL2 would be of interest in a breeding program, for improving characteristics of earliness, yield, and its components.


Author(s):  
Huimin Xie ◽  
Ke Wu ◽  
Anas Iqbal ◽  
Izhar Ali ◽  
Liang He ◽  
...  

The over-reliance on synthetic nitrogen (N) in current farming is a major concern because of its adverse effects on soil quality, the environment, and crop production. Organic fertilizers such as seaweed extract (SE) and microbial inoculants (MI) provide alternatives to chemical fertilizers that could decrease the amount of synthetic N needing to be applied and improve crop growth productivity. This study evaluated the combined effect of SE and MI with reduced N rates on the growth, biomass accumulation, yield, and yield components of an N-efficient rice cultivar (Baixiang 139-A) and N-inefficient rice cultivar (Guiyu 9-B). Field experiments were conducted in the early and late growing seasons at different sites in Guangxi province, China, in 2019. A total of five treatments, such as T1: N 180 + SE 0 + MI 0 (kg ha-1) (control); T2: N 180 + SE 3 + MI 3 (kg ha -1); T3: N 144 + SE 3 + MI 3 (kg ha-1); T4: N 126 + SE 3 + MI 3 (kg ha-1); and T5: N 108 + SE 3 + MI 3 (kg ha-1) were used. The leaf area index (LAI), effective panicle number, grain per spike, grain filling rate, and 1000-grain weight were significantly increased in T2 and T3 compared with the control. T2and T3 enhanced the biomass accumulation and grain yield of rice compared with the control. Furthermore, differences in the growth, yield, and yield components among the different cultivars were significant; however, there were no significant differences among the different locations. T3 increased the LAI, grain filling rate, biomass accumulation, and grain yield of rice by 4.5%, 5.9%, 6.6%, and 5.2%, respectively, compared with the control. Improvements in grain yield were mainly attributed to the enhanced growth and yield components. The correlation analysis also confirmed that LAI, productive tillers, grain filling rate, and biomass accumulation were positively correlated with grain yield. In sum, T3 (N144 + SE 3 + MI 3 (kg ha-1)) could achieve higher grain yield despite a reduction in the usage of chemical N. Generally, this study provides a sustainable nutrient management plan that increases crop production while minimizing costs of chemical N fertilizer application.


Sign in / Sign up

Export Citation Format

Share Document