scholarly journals Effect of Heat Stress on Inter-relationship of Physiological and Biochemical Traits with Grain Yield in Wheat (Triticum aestivum L.)

Author(s):  
Amrita Kumari ◽  
R. D. Ranjan ◽  
Chandan Roy ◽  
Awadesh Kumar Pal ◽  
S. Kumar

Heat stress, particularly the stress appears at the time of flowering to grain filling stages causing severe yield loss in wheat. Heat tolerance is complex phenomena that include adjustment in morphological, physiological and biochemical traits of the crop. Present investigation was carried out to understand the effect of terminal heat stress on different traits of wheat. The experiment was conducted in three dates of sowing as timely sown, late sown and very late sown to expose the crop to heat stress at later stages of the crop growth. Significant genetic variations for all the traits evaluated under three conditions indicated the presence of variability for the traits. Trait association analysis revealed that flag leaf chlorophyll content and MSI at seedling stage; MDA at reproductive stage had direct relationship with grain yield. While under very late sown condition MDA and RWC at seedling stages were found to be highly correlated with grain yield. It indicates that MDA, RWC at seedling stage and days to booting, days to milking plays important role in very late sown condition that can be used as selection criteria in breeding programme.

2017 ◽  
Vol 9 (4) ◽  
pp. 1894-1900
Author(s):  
Anzer Ul Islam ◽  
Ashok K. Chhabra ◽  
Satyaveer S. Dhanda ◽  
Renu Munjal

Cell membrane stability, grain filling rate, grain filling duration, canopy temperature and grain yield were used to evaluate performance of 100 diverse bread wheat (Triticum aestivum L.) genotypes under timely sown and late sown heat stress conditions for two cropping season. The genotypes differed significantly for all the traits show-ing considerable variation for improvement of characters. The genotypes WH1165 had significant high grain yield (14.6* g and 11.4g) and (11.3* g and 11.4* g) followed by cell membrane stability under timely sown and heat stress conditions, respectively indicating potential tolerance against heat stress. Correlation coefficients revealed that cell membrane stability (0.451**) and (0.639**) in timely sown and in late sown conditions, respectively were the most important trait followed by grain filling rate (0.882** and 0.744**) under timely sown and late sown conditions respec-tively. Results revealed that bread wheat genotypes which had high value of cell membrane stability had high grain yield showed potential photorespiration and high grain filling rate under heat stress condition. Twenty two genotypes WH1021, WH1155, VL803, WH787, NW1014, Raj3765, HD1869, 2042, WH1124, HD2285, WH1133, HUW234, 4066, Sonak, UP2425, UP2473, PBW503, PBW373, PBW533, SGP13, HD2643 and WH789 were identified as heat tolerant genotypes based on their relative performance in yield components, grain yield and heat susceptibility indi-ces. These genotypes were found to be ideal candidates to be used in developing heat tolerant wheat varieties. Canopy temperature, membrane thermostability and grain filling rate have also shown strong correlation with grain yield. Because of this association, these traits constitute the best available ‘tool’ for genetic improvement of wheat suitable for cultivation under heat stressed environments. Thus, these could be used as indirect selection criteria for developing heat tolerant wheat genotypes that would provide sufficient yields to meet the ever increasing wheat demand.


2019 ◽  
Vol 157 (6) ◽  
pp. 537-549
Author(s):  
A. Roy Chowdhury ◽  
M. Ghosh ◽  
M. Lal ◽  
A. Pal ◽  
K. K. Hazra ◽  
...  

AbstractTerminal heat stress leads to sizeable yield loss in late-sown wheat in tropical environments. Several synthetic compounds are known to counteract plant stress emanating from abiotic factors. A field experiment was conducted in Sabour (eastern India) during 2013–2016 to investigate the field efficacy of two synthetic compounds, calcium chloride (CaCl2) and arginine, for improving grain yield of two contrasting wheat cultivars (DBW 14 and K 307) facing terminal heat stress. For this, foliar spray of 18.0 mM CaCl2 at booting (CCB) or anthesis (CCA), 9.0 mM CaCl2 at both booting and anthesis (CCB+A), 2.5 mM arginine at booting (ARGB) or anthesis (ARGA) and 1.25 mM arginine at both booting and anthesis (ARGB+A) treatments along with no-spray and water-spray treatments were evaluated in late-sown wheat. The highest grain yield was recorded in treatment CCB+A, followed by CCA and ARGB+A. However, the effect of these compounds was marginal on grain yield when applied only at the booting stage. Grains/ear and thousand-grain weight were found to be the critical determinants for yield in late-sown wheat. During the anthesis to grain filling period, flag-leaf chlorophyll degradation and increase in relative permeability in no-spray treatment were 34–36% and 29–52%, respectively, but these values were reduced considerably in CCB+A treatment followed CCA. Thus, foliar spray of 9.0 mM CaCl2 both at booting and anthesis stages may be recommended for alleviating the negative impacts of terminal heat stress in late-sown wheat and improving its productivity (>13%).


2020 ◽  
Vol 73 (2) ◽  
pp. 9131-9141
Author(s):  
Zine El Abidine Fellahi ◽  
Abderrahmane Hannachi ◽  
Hamenna Bouzerzour

This study aimed at evaluating the expected gains from selection obtained based upon direct, indirect, and index-based selection in a set of 599 bread wheat lines. The experiment was carried out at the experimental field of INRAA institute, Setif research unit (Algeria), in a Federer augmented block design including three controls. A wide range of genetic variability was observed among lines for the eleven traits assessed. The results indicated that index-based selection and selection based on grain yield expressed higher expected genetic gain than direct and indirect mono-trait-based selection. The best 15 selected lines exhibited higher grain yield than the control varieties, and they were clustered in three groups that contrasted mainly for the flag-leaf area, thousand-kernel weight, biomass, and harvest index. The index-based selection appears as a useful tool for the rapid selection of early filial generations, enriching selected breeding materials with desirable alleles and reducing the number of years required to combine these traits in elite varieties.


2015 ◽  
Vol 47 (4) ◽  
pp. 49-63 ◽  
Author(s):  
A.A. Khan ◽  
M.R. Kabir

Abstract Twenty five spring wheat genotypes were evaluated for terminal heat stress tolerance in field environments in the Agro Ecological Zone-11 of Bangladesh, during 2009-2010 cropping season. The experiments were conducted at Wheat Research Centre, Bangladesh Agricultural Research Institute, using randomized block design with three replicates under non-stress (optimum sowing) and stress (late sowing) conditions. Seven selection indices for stress tolerance including mean productivity (MP), geometric mean productivity (GMP), tolerance (TOL), yield index (YI), yield stability index (YSI), stress tolerance index (STI) and stress susceptibility index (SSI) were calculated based on grain yield of wheat under optimum and late sowing conditions. The results revealed significant variations due to genotypes for all characters in two sowing conditions. Principal component analysis revealed that the first PCA explained 0.64 of the variation with MP, GMP, YI and STI. Using MP, GMP, YI and STI, the genotypes G-05 and G-22 were found to be the best genotypes with relatively high yield and suitable for both optimum and late heat stressed conditions. The indices SSI, YSI and TOL could be useful parameters in discriminating the tolerant genotypes (G-12, G-13, and G-14) that might be recommended for heat stressed conditions. It is also concluded from the present studies that biomass, grain filling rate and spikes number m-2 are suitable for selecting the best genotypes under optimum and late sowing conditions because these parameters are highly correlated with MP, GMP, YI and STI. However, high ground cover with long pre heading stage and having high grain filling rate would made a genotype tolerant to late heat to attain a high grain yield in wheat.


1988 ◽  
Vol 68 (2) ◽  
pp. 311-322 ◽  
Author(s):  
PATRICK M. McMULLAN ◽  
PETER B. E. McVETTY ◽  
AILEEN A. URQUHART

Dry matter and nitrogen (nitrate and reduced) accumulation and redistribution in four different spring wheat (Triticum aestivum L.) genotypes grown at field density were studied on a plant part and whole plant basis over the growing season for 2 yr. The four cultivars displayed significant differences in plant part and total plant dry matter, harvest index, nitrogen content, nitrogen concentration, nitrogen harvest index and nitrogen translocated values at most sample dates in both years. Grain yield was highly correlated with dry matter accumulation (r = 0.88**), while grain nitrogen content was highly correlated with plant nitrogen content (r = 0.95**). Nitrogen harvest index and plant nitrogen content were correlated at anthesis (r = 0.61**), while, as a consequence of this, the amount of nitrogen translocated was highly correlated with plant nitrogen content at anthesis (r = 0.87**). Nitrogen harvest index and harvest index were highly correlated (r = 0.83**), indicating that they may be related processes. Since plant dry matter and plant nitrogen content were not significantly correlated, it should be possible to select simultaneously for these traits to effect grain yield and grain nitrogen content increases on a per-plant basis. Further research will have to be done to determine how these changes will relate to grain nitrogen concentrations and grain yield per unit area.Key words: Wheat, dry matter, nitrogen, yield, protein, Triticum aestivum L.


2020 ◽  
Vol 206 (6) ◽  
pp. 722-733 ◽  
Author(s):  
Siegfried Schittenhelm ◽  
Tina Langkamp‐Wedde ◽  
Martin Kraft ◽  
Lorenz Kottmann ◽  
Katja Matschiner

2008 ◽  
Vol 110 (3) ◽  
pp. 366-375 ◽  
Author(s):  
Johanna Gelang ◽  
Håkan Pleijel ◽  
Ebe Sild ◽  
Helena Danielsson ◽  
Suhaila Younis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document