scholarly journals Cell Membrane Stability and Relative Cell Injury in Response to Heat Stress during Early and Late Seedling Stages of Diverse Carrot (Daucus carota L.) Germplasm

HortScience ◽  
2020 ◽  
Vol 55 (9) ◽  
pp. 1446-1452 ◽  
Author(s):  
Aneela Nijabat ◽  
Adam Bolton ◽  
Muhammad Mahmood-ur-Rehman ◽  
Adeel Ijaz Shah ◽  
Rameez Hussain ◽  
...  

Heat waves occur with more regularity and they adversely affect the yield of cool season crops including carrot (Daucus carota L.). Heat stress influences various biochemical and physiological processes including cell membrane permeability. Ion leakage and increase in cell permeability are indicators of cell membrane stability and have been used to evaluate the stress tolerance response in numerous crops and inform plant breeders for improving heat tolerance. No study has been published about the effects of heat stress on cell membrane stability and relative cell injury of carrot. Therefore, the present study was designed to estimate these stress indicators in response to heat stress at the early and late seedling developmental stages of 215 diverse accessions of wild and cultivated carrot germplasm. The article identifies the relationship between early and late stages of seedling tolerance across carrot genotypes and identifies heat-tolerant genotypes for further genetic analysis. Significant genetic variation among these stress indicators was identified with cell membrane stability and relative cell injury ranging from 6.3% to 97.3% and 2.8% to 76.6% at the early seedling stage, respectively; whereas cell membrane stability and relative cell injury ranged from 2.0% to 94.0% and 2.5% to 78.5%, respectively, at the late seedling stage under heat stress. Broad-sense heritability ranged from 0.64 to 0.91 for traits of interest under study, which indicates a relatively strong contribution of genetic factors in phenotypic variation among accessions. Heat tolerance varied widely among both wild and cultivated accessions, but the incidence of tolerance was higher in cultivated carrots than in wild carrots. The cultivated carrot accessions PI 326009 (Uzbekistan), PI 451754 (Netherlands), L2450 (USA), and PI 502654 (Pakistan) were identified as the most heat-tolerant accessions with highest cell membrane stability. This is the first evaluation of cell membrane stability and relative cell injury in response to heat stress during carrot development.

2017 ◽  
Vol 9 (4) ◽  
pp. 1894-1900
Author(s):  
Anzer Ul Islam ◽  
Ashok K. Chhabra ◽  
Satyaveer S. Dhanda ◽  
Renu Munjal

Cell membrane stability, grain filling rate, grain filling duration, canopy temperature and grain yield were used to evaluate performance of 100 diverse bread wheat (Triticum aestivum L.) genotypes under timely sown and late sown heat stress conditions for two cropping season. The genotypes differed significantly for all the traits show-ing considerable variation for improvement of characters. The genotypes WH1165 had significant high grain yield (14.6* g and 11.4g) and (11.3* g and 11.4* g) followed by cell membrane stability under timely sown and heat stress conditions, respectively indicating potential tolerance against heat stress. Correlation coefficients revealed that cell membrane stability (0.451**) and (0.639**) in timely sown and in late sown conditions, respectively were the most important trait followed by grain filling rate (0.882** and 0.744**) under timely sown and late sown conditions respec-tively. Results revealed that bread wheat genotypes which had high value of cell membrane stability had high grain yield showed potential photorespiration and high grain filling rate under heat stress condition. Twenty two genotypes WH1021, WH1155, VL803, WH787, NW1014, Raj3765, HD1869, 2042, WH1124, HD2285, WH1133, HUW234, 4066, Sonak, UP2425, UP2473, PBW503, PBW373, PBW533, SGP13, HD2643 and WH789 were identified as heat tolerant genotypes based on their relative performance in yield components, grain yield and heat susceptibility indi-ces. These genotypes were found to be ideal candidates to be used in developing heat tolerant wheat varieties. Canopy temperature, membrane thermostability and grain filling rate have also shown strong correlation with grain yield. Because of this association, these traits constitute the best available ‘tool’ for genetic improvement of wheat suitable for cultivation under heat stressed environments. Thus, these could be used as indirect selection criteria for developing heat tolerant wheat genotypes that would provide sufficient yields to meet the ever increasing wheat demand.


Author(s):  
Sherzod Nigmatullayevich Rajametov ◽  
Eun Young Yang ◽  
Hyo Bong Jeong ◽  
Myeong Cheoul Cho ◽  
Soo-Young Chae ◽  
...  

High temperature seriously effects on plant vegetative and reproductive development and reduces productivity of plants, while to increase crop yield is the main target in most crop heat stress tolerance improvement breeding programs, not just survival, under high temperature. Our aim was to compare temperature stress tolerance in two commercial tomato cultivars “Dafnis” (big fruit size) and “Minichal” (cherry fruit size) to develop early screening methods and find out survival rate and physiological responses of tomato cultivars on high temperature (40°C and within 70% RH, day/night) in 4-5 true leaf seedling stage- (4LS) and identifies the linkage of heat tolerance with fruit set and leaf heat damage rates (LHD) in seedling stage with subsequent vegetative traits at recovery. Results showed that heat stress significantly affected on physiological-chemical and vegetative parameters of seedlings regardless of tomato cultivars. Survival and the threshold level of high temperature tolerance in the seedlings of cv. “Dafnis” and “Minichal” were identified on days 7 and 9, respectively. Our findings revealed that photosynthesis (PN, Gs, Ci, Tr) parameters were increased and CHL content persisted steady value in cv. “Minichal” during heat stress period, however EC and RPL rates were lower than cv. “Dafnis”. Heat stress reduced the SFW in both cultivars in seedling stage, but PH and RFW were significantly decreased in the heat tolerant cv. “Minichal”, whereas this parameters were not significantly ranged in the heat susceptible cv. “Dafnis”. Additionally, there no found linkage between vegetative parameters with decreasing of PN and CHL rates during HT of seedlings. In plants of cv. “Minichal” with LHD-25, 50 and 75% were no found significant differences in PH, whereas in cv. “Dafnis” significant differences were determined in plants with LHD-75%, and the significant differences in rates of SFW and RFW were observed in plants of cv. “Dafnis” having LHD-75% for 28 days of recovery at NT condition. Taken together, we concluded that heat stress affected on physiological parameters regardless of tolerance level, and to identify heat tolerant genotype in tomato breeding program, screening and selection genotypes have to be evaluated at the vegetative and reproductive stages with consideration fruit size types. Since we could not find linkage between heat tolerances in seedling stage with fruit set at the reproductive stage and fruit set cannot be used as a general predictor of heat tolerance.


Author(s):  
Syed Bilal Hussain ◽  
Ali Bakhsh ◽  
Muhammad Zubair

A comparison was made of the physiological and morphological differences between Inqlab-91 (hexaploid) and Langdon (tetralpoid) wheat genotypes in response to high temperature stress applied at third leaf stage of growth. Electrolytes leakage technique was used to detect differences in the heat sensitivities of leaves of Inqlab-91 and Langdon. This method showed that at both 35 or 40°C Inqlab-91 was more heat tolerant than Langdon.


2016 ◽  
Vol 67 (7) ◽  
pp. 712 ◽  
Author(s):  
Shoaib Ur Rehman ◽  
Muhammad Bilal ◽  
Rashid Mehmood Rana ◽  
Muhammad Naveed Tahir ◽  
Muhammad Kausar Nawaz Shah ◽  
...  

Heat and drought are among the major obstacles confronting crop production under climate change. The present study was conducted to evaluate 50 diverse wheat genotypes for cell membrane stability (CMS) and chlorophyll content at seedling and anthesis stages under heat and drought stress conditions, to understand the effect of the two abiotic factors and to find promising genotypes for future breeding. Experiments were conducted in the glasshouse (seedling stage) and the field (anthesis stage). Analysis of variance showed significant variation (P ≤ 0.05) for all of the traits at seedling and anthesis stages. High levels of broad-sense heritability and genetic advance at 5% selection intensity indicated the presence of a high genetic component of variation and potential for genetic improvement through selection among the existing genetic variation. CMS showed a significant positive correlation with 1000-grain weight (TGW) under heat and drought conditions at both seedling and anthesis stages. Chlorophyll a/b ratio at seedling stage exhibited a significant negative correlation (r = –0.39, P < 0.05) with TGW under heat stress. Total chlorophyll content was significantly (r = 0.42, P < 0.05) correlated with TGW under heat stress at anthesis. Genotypes ETAD248 and ETAD7 showed the highest CMS and TGW values, whereas their chlorophyll a/b values were lowest, at both seedling and anthesis stages under heat and drought stress conditions. Higher CMS and total chlorophyll content, and lower chlorophyll a/b, were found to be useful indicators to identify genotypes with high TGW under heat and drought stress conditions. This study indicated the possibility of using seedling resistance as an indicator for later stage response in breeding for heat and drought resistance. The resistant genotypes identified can be used as potential germplasm in breeding programs.


Horticulturae ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. 119
Author(s):  
Sherzod Nigmatullaevich Rajametov ◽  
Eun Young Yang ◽  
Hyo Bong Jeong ◽  
Myeong Cheoul Cho ◽  
Soo Young Chae ◽  
...  

High temperature (HT) significantly affects crop physiological traits and reduces productivity in plants. To increase yields as well as survival of crops under HT, developing heat-tolerant plants is one of the main targets in crop breeding programs. The present study attempted to investigate the linkage of the heat tolerance between the seedling and reproductive growth stages of tomato cultivars ’Dafnis‘ and ’Minichal.’ This research was undertaken to evaluate heat tolerance under two experimental designs such as screening at seedling stage and screening from reproductive traits in greenhouses. Survival rate and physiological responses in seedlings of tomatoes with 4-5 true leaves were estimated under HT (40 °C, RH 70%, day/night, respectively) and under two control and HT greenhouse conditions (day time 28 °C and 40 °C, respectively). Heat stress significantly affected physiological–chemical (photosynthesis, electrolyte conductivity, proline) and vegetative parameters (plant height, shoot fresh weight, root fresh weight) in all tomato seedlings. The findings revealed that regardless of tomato cultivars the photosynthesis, chlorophyll, total proline and electrical conductivity parameters were varied in seedlings during the heat stress period. The heat tolerance rate of tomatoes in the seedling stage might not always be associated with reproductive parameters. HT reduced fruit parameters such as fruit weight (31.9%), fruit length (14.1%), fruit diameter (19.1%), and fruit hardness (9.1%) compared to NT under HT in heat-susceptible tomato cultivar ‘Dafnis’, while in heat-tolerant cultivar ‘Minichal’ fruit length (7.1%) and fruit diameter (12.1%) was decreased by the effects of HT, but on the contrary fruit weight (3.6%) and fruit hardness (8.3%) were increased. In conclusion, screening and selection for tomatoes should be evaluated at the vegetative and reproductive stages with consideration of reproductive parameters.


2017 ◽  
Vol 9 (9) ◽  
pp. 1606 ◽  
Author(s):  
Ibrahim ElBasyoni ◽  
Mohamed Saadalla ◽  
Stephen Baenziger ◽  
Harold Bockelman ◽  
Sabah Morsy

Sign in / Sign up

Export Citation Format

Share Document