scholarly journals Adsorption of Congo Red Dye from Aqueous Solutions by Wheat husk

2019 ◽  
Vol 25 (12) ◽  
pp. 72-84
Author(s):  
Abeer I Alwared ◽  
Israa Sabah

The Wheat husk is one of the common wastes abundantly available in the Middle East countries especially in Iraq. The present study aimed to evaluate the Wheat husk as low cost material, eco-friendly adsorbents for the removal of the carcinogenic dye (Congo red dye) from wastewater by investigate the effect of, at different conditions such as, pH(3-10), amount of adsorbents (1-2.3gm/L),and particle size (125-1000) μm, initial Congo red dye concentration(10, 25 , 50 and 75mg/l)  by batch experiments. The results showed that the removal percentage of dye increased with increasing adsorbent dosage, and decreasing particle size. The maximum removal and uptake reached (91%) , 21.5mg/g, respectively for 25 initial concentration, pH 6.7 and 1.5 g/l Wheat husk dosage. The experimental data fitted well to Langmuir isotherm mode. The kinetic data support the assumptions of chemisorption were indicates a good fitting to the pseudo-second-order model.

2021 ◽  
Vol 765 (1) ◽  
pp. 012089
Author(s):  
R Taufik ◽  
M Mohamad ◽  
R Wannahari ◽  
N F Shoparwe ◽  
WHW Osman ◽  
...  

Author(s):  
Neha bhadauria ◽  
Arjun Suresh

The present study analyzed the efficiency of a naturally derived fenugreek powder for removal of Congo red dye from the aqueous solution. The flocculation Studies on Congo Red (CR) a hazardous, textile dye onto Fenugreek Powder and its adsorption was analyzed. Fenugreek Powder is Eco-friendly, biodegradable and locally available in the market. The dye adsorption process was performed in different batches at varying pH, dye concentration, adsorbent concentration and contact time to get the best results. The result showed that the maximum removal of dye was 42.4% with 10mg/l of Fenugreek powder at pH 4.


2021 ◽  
Vol 235 ◽  
pp. 251-271
Author(s):  
Soulaiman Iaich ◽  
Youssef Miyah ◽  
Fatima Elazhar ◽  
Salek Lagdali ◽  
Mohamed El-Habacha

2018 ◽  
Vol 23 (6) ◽  
pp. 1053-1060 ◽  
Author(s):  
Raquel Studart de Farias ◽  
Hugo Leonardo de Brito Buarque ◽  
Mabel Ribeiro da Cruz ◽  
Luana Meg Freitas Cardoso ◽  
Tamyris de Aquino Gondim ◽  
...  

ABSTRACT This study investigates the potential use of amino-functionalized silica gel as an adsorbent for the recovering of congo red dye from aqueous solution. The effects of pH, contact time, and temperature were determined and evaluated. Equilibrium isotherms were also studied. The adsorption kinetics was modeled by pseudo-first order and pseudo-second order. Furthermore, desorption of congo red was preliminarily studied. The pH range from 4.5 to 7.0 was favorable for the adsorption of congo red onto amine modified silica at 25ºC. Higher adsorption capacity was obtained at 50ºC. Langmuir and Freundlich models were fitted to the adsorption equilibrium data. The best fittings were obtained with the pseudo-second order and Langmuir model for kinetics and equilibrium, respectively. Desorption studies suggest that ion exchange might be the major mode of adsorption. KOH solution was the best desorbing agent for recovering the adsorbed dye.


2016 ◽  
Vol 73 (9) ◽  
pp. 2132-2142 ◽  
Author(s):  
F. Ferrarini ◽  
L. R. Bonetto ◽  
Janaina S. Crespo ◽  
M. Giovanela

Adsorption has been considered as one of the most effective methods to remove dyes from aqueous solutions due to its ease of operation, high efficiency and wide adaptability. In view of all these aspects, this study aimed to evaluate the adsorption capacity of a halloysite-magnetite-based composite in the removal of Congo red dye from aqueous solutions. The effects of stirring rate, pH, initial dye concentration and contact time were investigated. The results revealed that the adsorption kinetics followed the pseudo-second-order model, and equilibrium was well represented by the Brunauer–Emmett–Teller isotherm. The thermodynamic data showed that dye adsorption onto the composite was spontaneous and endothermic and occurred by physisorption. Finally, the composite could also be regenerated at least four times by calcination and was shown to be a promising adsorbent for the removal of this dye.


2021 ◽  
Vol 232 (9) ◽  
Author(s):  
Abdul Rahman Abdul Rahim ◽  
Hanan M. Mohsin ◽  
Kausalya Bong Ling Chin ◽  
Khairiraihanna Johari ◽  
Norasikin Saman

2021 ◽  
Vol 65 (2) ◽  
Author(s):  
Nafees Ahmed ◽  
Md. Ataur Rahman

Abstract. Bioadsorbents are drawing the attention of the environmental scientists in removing organic pollutants from aqueous solution because of their availability and low cost. In this research, adsorptive removal of 2,4-dichlorophenol (2,4-DCP) onto used black tea leaves (UBTLs) as well as on sodium chlorite modified used black tea leaves (SCM-UBTLs) was investigated at different conditions. The value of pH was optimized at 2. Smaller particle size (50-100 mm) of both the adsorbents showed maximum removal of 2,4-DCP. However, SCM-UBTLs exhibited comparatively higher (54%) removal of DCP than unmodified used black tea leaves (UM-UBTLs) (40%) at similar conditions (pH, particle size and dose). Equilibrium attained within three hours for both the adsorbents of smaller particle size at pH 2. Adsorption follows the Ho’s pseudo-second-order kinetics rather than Lagergren pseudo-first- order for both the adsorbents. The experimental data was justified with the FTIR spectra of adsorbed and unadsorbed surfaces.   Resumen. Debido a su disponibilidad y bajo costo los bioadsorbentes están atrayendo la atención de los científicos ambientales para la eliminación de contaminantes orgánicos de soluciones acuosas. En esta investigación se analizó la eliminación, por adsorción, del 2,4-diclorofenol (2,4-DCP) en hojas de té negro usadas (UBTL), así como en hojas de té negro usadas tratadas con clorito de sodio (SCM-UBTL) bajo diferentes condiciones. El valor de pH se optimizó a 2. El tamaño de partícula más pequeño (50-100 µm), de ambos adsorbentes, mostró una eliminación máxima del 2,4-DCP. Sin embargo, los SCM-UBTL exhibieron una remoción de DCP comparativamente más alta (54%) que las hojas de té negro usadas sin modificar (UM-UBTL) (40%) en condiciones similares (pH, tamaño de partícula y dosis). El equilibrio se alcanzó en tres horas para ambos adsorbentes con el tamaño de partícula más pequeño a pH 2. La adsorción sigue la cinética de pseudo-segundo orden de Ho en lugar de la de pseudo-primer orden de Lagergren para ambos adsorbentes. Los datos experimentales se vieron apoyados con los espectros FTIR de superficies adsorbidas y no adsorbidas.


2016 ◽  
Vol 4 (1) ◽  
pp. 29-35 ◽  
Author(s):  
Yusef Omidi Khaniabadi ◽  
Mohammad Javad Mohammadi ◽  
Mojtaba Shegerd ◽  
Shahram Sadeghi ◽  
Hassan Basiri

Sign in / Sign up

Export Citation Format

Share Document