scholarly journals Adsorptive Removal of Congo red dye from wastewater using Fenugreek Powder

Author(s):  
Neha bhadauria ◽  
Arjun Suresh

The present study analyzed the efficiency of a naturally derived fenugreek powder for removal of Congo red dye from the aqueous solution. The flocculation Studies on Congo Red (CR) a hazardous, textile dye onto Fenugreek Powder and its adsorption was analyzed. Fenugreek Powder is Eco-friendly, biodegradable and locally available in the market. The dye adsorption process was performed in different batches at varying pH, dye concentration, adsorbent concentration and contact time to get the best results. The result showed that the maximum removal of dye was 42.4% with 10mg/l of Fenugreek powder at pH 4.

2016 ◽  
Vol 73 (9) ◽  
pp. 2132-2142 ◽  
Author(s):  
F. Ferrarini ◽  
L. R. Bonetto ◽  
Janaina S. Crespo ◽  
M. Giovanela

Adsorption has been considered as one of the most effective methods to remove dyes from aqueous solutions due to its ease of operation, high efficiency and wide adaptability. In view of all these aspects, this study aimed to evaluate the adsorption capacity of a halloysite-magnetite-based composite in the removal of Congo red dye from aqueous solutions. The effects of stirring rate, pH, initial dye concentration and contact time were investigated. The results revealed that the adsorption kinetics followed the pseudo-second-order model, and equilibrium was well represented by the Brunauer–Emmett–Teller isotherm. The thermodynamic data showed that dye adsorption onto the composite was spontaneous and endothermic and occurred by physisorption. Finally, the composite could also be regenerated at least four times by calcination and was shown to be a promising adsorbent for the removal of this dye.


2018 ◽  
Vol 37 (1-2) ◽  
pp. 160-181 ◽  
Author(s):  
Ridha Lafi ◽  
Imed Montasser ◽  
Amor Hafiane

This study investigates the potential use of activated carbon prepared from coffee waste (CW) as an adsorbent for the removal of congo red dye from aqueous solution. The oxygen-containing groups of activated carbon prepared from CW play an important role in dyes ions adsorption onto activated carbon prepared from CW. The activated carbon is characterized by scanning electron microscopy and Fourier transform infrared (FTIR) spectroscopy. Adsorption experiments were carried out as batch studies at different contact time, pH, and initial dye concentration. The dye adsorption equilibrium was attained after 120 min of contact time. Removal of dye in acidic solutions was better than in basic solutions. The adsorption of dye increased with increasing initial dye concentration. The equilibrium data were revealed that Langmuir model was more suitable to describe the congo red adsorption and demonstrated excellent reusability potential with desorption greater than 90% throughout six consecutive adsorption–desorption cycles. Experimental data founded that kinetics followed a pseudo-second-order equation. Thermodynamic study showed that the adsorption was a spontaneous and exothermic process. According to the FTIR analyses, hydrogen bonding and electrostatic interactions between dyes and oxygen-containing functional groups on activated carbon prepared from CW are dominant mechanisms for dye adsorption.


2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Mohammed T. M. H. Hamad ◽  
Mona S. S. Saied

AbstractReleasing of dye-containing wastewater by the textile industry into general water bodies can adversely affect aquatic ecosystems and human health. The objective of this study is to assess the Congo red dye biodegradation and detoxification by immobilized Aspergillus niger obtained from textile dye wastewater. The effects of process parameters like pH, temperature, reaction time and initial concentration on Congo red degradation were studied. Equilibrium adsorption isotherms, kinetics and thermodynamics were also investigated. The experimental data were analyzed by the Langmuir, Freundlich and Temkin models of adsorption. The adsorption isotherm data fitted well to Langmuir isotherm and the kinetic data fitted well to the pseudo-second-order model. The degraded metabolites of Congo red were characterized by using UV–Vis spectrophotometer, Fourier transform infrared spectroscopy and high-performance liquid chromatography, further confirmed that biodegradation of Congo red was due to reduction of the azo bond. Phytotoxicity test confirmed that degradation metabolites were a less toxic than original dye. The reusability of the immobilized Aspergillus niger was repeated with six cycles and removal efficiency ranged from 98 to 72%. The results in this study substantiate that immobilized Aspergillus niger could be employed as a good adsorbent for the removal of Congo red dye from wastewater.


Author(s):  
A.K. ASIAGWU

This work was conducted in line with the efforts to remove coloured materials from waste water using non – conventional techniques. Therefore, this study investigated the effectiveness and efficiency of melon (Cucumeropsis mannii) peels in the removal of ultramarine red, from aqueous solution. The dependence of sorption parameters (contact time, dosage, temperature and pH) on dye removal were examined. Results obtained revealed that increase in the contact time between 20-100 minutes increased the dye adsorption. The maximum percentage of ultramarine red dye removed was obtained at 100 minutes. However, increase in dye concentration from 10 – 50mg/L, resulted to an increase in sorption capacity (0437-1.062mg/g). The pH increase resulted to increase in ultramarine red adsorption. Meanwhile ultramarine red adsorption was also observed to increase from 0.054-0.079mg/g, while the temperature was varied between 30o-70oC. The data generated were further fitted to both Langmuir and Freunlich Isotherms. The separation factor (SF) from Langmuir was 0.48. While the coefficient of determination from Freundlich (R2) was 0.976, indicating that both models were favourable to the adsorption process. Pseudo-second order kinetics produced a better description of the adsorption process than the pseudoThis work was conducted in line with the efforts to remove coloured materials from waste water using non – conventional techniques. Therefore, this study investigated the effectiveness and efficiency of melon (Cucumeropsis mannii) peels in the removal of ultramarine red, from aqueous solution. The dependence of sorption parameters (contact time, dosage, temperature and pH) on dye removal were examined. Results obtained revealed that increase in the contact time between 20-100 minutes increased the dye adsorption. The maximum percentage of ultramarine red dye removed was obtained at 100 minutes. However, increase in dye concentration from 10 – 50mg/L, resulted to an increase in sorption capacity (0437-1.062mg/g). The pH increase resulted to increase in ultramarine red adsorption. Meanwhile ultramarine red adsorption was also observed to increase from 0.054-0.079mg/g, while the temperature was varied between 30o-70oC. The data generated were further fitted to both Langmuir and Freunlich Isotherms. The separation factor (SF) from Langmuir was 0.48. While the coefficient of determination from Freundlich (R2) was 0.976, indicating that both models were favourable to the adsorption process. Pseudo-second order kinetics produced a better description of the adsorption process than the pseudo-first order kinetics. The melon peel is a good adsorbent for the sorption of ultramarine red in aqueous solution.


Author(s):  
Sarang Agarwal ◽  
Sowmya Vilvanathan ◽  
Shanthakumar S

The present study evaluates the feasibility of an adsorbent prepared from Annona squamosa (custard apple) peel, in removing Congo red dye from its aqueous solution. Batch experiments were carried out to study the effect of various parameters like pH (2-8), adsorbent dose (0.005-0.5 g/100mL), contact time (5-120 min), initial dye concentration (25-200 mg/L) and temperature (298-308 K) to determine its effectiveness as an adsorbent. Maximum dye removal attained at pH 2, adsorbent dose 0.1 g/100mL in equilibrium time of 45 min at 308K. Adsorption kinetics using pseudo-first order and pseudo-second order models, and adsorption isotherm using Langmuir and Freundlich models were studied. The adsorption process was found to follow pseudo-second order kinetic model and more favourably described the Langmuir isotherm model. The Gibbs free energy was found to be negative, signifying the spontaneous nature of the adsorption process. Removal of Congo red dye from its aqueous solution by custard apple peel was found to be an endothermic process. The results of the present study suggest that custard apple can be effectively used as an adsorbent to remove Congo red dye from aqueous solution.


Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3287
Author(s):  
Bushra Fatima ◽  
Basem Al Alwan ◽  
Sharf Ilahi Siddiqui ◽  
Rabia Ahmad ◽  
Mohammed Almesfer ◽  
...  

This study reports the synthesis of copper–zinc binary oxide coupled cadmium tungstate through a simple bio-precipitation method followed by calcination at 600 °C and its adsorption application. The characterization analysis reveals that the prepared composite has low particles size (nano-range), high porosity, and functional groups on the surface. The calcination of sample at 600 °C causes some essential function groups to disappear on the surface. Prepared composite was found to be effective adsorptive material to treat Congo red dye in aqueous solution. 2.5 g L−1 dose of adsorbent could remove more than 99% Congo red dye from 10 mg L−1 solution and more than 80% Congo red dye from 60 mg L−1 aqueous solution. The maximum adsorption capacity of present adsorbent was calculated to be 19.6 mg Congo red per gram of adsorbent. Isotherms analysis suggested a physio-chemical adsorption process. Thermodynamic analysis revealed a exothermic and feasible adsorption process. Adsorption rate was well explained by pseudo second order kinetics. The rate determining step was intra-particle diffusion evaluated from the Weber-Morris plot. To assess the adsorption performance of present adsorbent for Congo red dye the partition coefficient and adsorption equilibrium capacity were compared with other adsorbents. The partition coefficient and adsorption equilibrium values for 10 mg L−1 aqueous solution were found to be approximately 83.3 mg g−1 µM−1 and 4.0 mg g−1 at 30 °C and 7.0 pH using 2.5 g L−1 adsorbent. The value of partition coefficient was found to be higher than previous reported zinc oxide coupled cadmium tungstate having partition coefficient = as 21.4 mg g−1 µM−1 at 30 °C and 7.0 pH using 2.0 g L−1 adsorbent (Fatima, B.; Siddiqui, S.I.; Nirala, R.K. et al., Environ. Poll. 2021, 271, 116401). These results suggested that present adsorption technology is efficient for wastewater treatment.


Sign in / Sign up

Export Citation Format

Share Document