A Corten-Dolan model considering material strength degradation

Author(s):  
Xu Xu ◽  
Qiwen Xue ◽  
Yiqian He
Author(s):  
L. Boyce ◽  
C. C. Bast

This paper describes the development of methodology for a probabilistic material strength degradation model, that provides for quantification of uncertainty in the lifetime material strength of structural components of aerospace propulsion systems subjected to a number of diverse random effects. The model has most recently been extended to include thermal fatigue. The discussion of thermal fatigue, in the context of probabilistic material strength degradation, is the central feature of this paper. The methodology, for all effects, is embodied in two computer programs, PROMISS and PROMISC. These programs form a “material resistance” model that may be used in the aerospace structural reliability program, NESSUS or in other applications. A probabilistic material strength degradation model for thermal fatigue and other relevant effects, in the form of a postulated randomized multifactor interaction equation, is used to quantify lifetime material strength. Each multiplicative term in the model has the property that if the current value of an effect equals the ultimate value, then the lifetime strength will be zero. Also, if the current value of an effect equals the reference value, the term equals one and lifetime strength is not affected by that particular effect. Presently, the model includes up to four effects that typically reduce lifetime strength: high temperature, mechanical fatigue, creep and thermal fatigue. Statistical analysis of experimental data for Inconel 718 obtained from the open literature and laboratory reports is also included in the paper. The statistical analysis provided regression parameters for use as the model’s empirical material constants, thus calibrating the model specifically for Inconel 718. Model calibration was carried out for four variables, namely, high temperature, mechanical fatigue, creep and thermal fatigue. Finally, using the PROMISS computer program, a sensitivity study was performed with the calibrated random model to illustrate the effects of mechanical fatigue, creep and thermal fatigue, at about 1000 °F, upon random lifetime strength.


2014 ◽  
Vol 556-562 ◽  
pp. 1302-1309 ◽  
Author(s):  
Xue Hong He ◽  
Guo Wei Zhang ◽  
Guo Peng Liu ◽  
Li Yang Xie

In order to improve reliability of automobile transmission system and its running stability, this paper raises a reliability assessment calculation method. This method considers dependent failure of the parts, material strength degradation with increasing load times and uncertainty of load times in micro and macro scopes to explore main factors affecting the system reliability. The feasibility of this method has been validated by the example analysis. As a result , material properties of each gear parts, torques and load times play key parts in reliability of the system.


10.14311/1099 ◽  
2009 ◽  
Vol 49 (1) ◽  
Author(s):  
K. Anderson ◽  
M. Gillie

The mechanical response of connections in fire is largely based on material strength degradation and the interactions between the various components of the connection. In order to predict connection performance in fire, temperature profiles must initially be established in order to evaluate the material strength degradation over time. This paper examines two current methods for predicting connection temperatures: The percentage method, where connection temperatures are calculated as a percentage of the adjacent beam lower-flange, mid-span temperatures; and the lumped capacitance method, based on the lumped mass of the connection. Results from the percentage method do not correlate well with experimental results, whereas the lumped capacitance method shows much better agreement with average connection temperatures. A 3D finite element heat transfer model was also created in Abaqus, and showed good correlation with experimental results. 


2002 ◽  
Vol 82 (16) ◽  
pp. 3027-3043 ◽  
Author(s):  
Shuqi Guo ◽  
Naoto Hirosaki ◽  
Toshiyuki Nishimura ◽  
Yoshinobu Yammoto ◽  
Mamoru Mitomo

2020 ◽  
Vol 9 (1) ◽  
pp. 32-37
Author(s):  
Ruslan Hidayat ◽  
Saiful Arfaah

One of the most important factors in the structure of the pile foundation in the construction of the bridge is the carrying capacity of the soil so as not to collapse. Construction of a bridge in the village of Klitik in Jombang Regency to be built due to heavy traffic volume. The foundation plan to be used is a pile foundation with a diameter of 50 cm, the problem is what is the value of carrying capacity of soil and material. The equipment used is the Dutch Cone Penetrometer with a capacity of 2.50 tons with an Adhesion Jacket Cone. The detailed specifications of this sondir are as follows: Area conus 10 cm², piston area 10 cm², coat area 100 cm², as for the results obtained The carrying capacity of the soil is 60.00 tons for a diameter of 30 cm, 81,667 tons for a diameter of 35 cm, 106,667 tons for a diameter of 40 cm, 150,000 tons for a diameter of 50 cm for material strength of 54,00 tons for a diameter of 30 cm, 73,500 tons for a diameter of 35 cm, 96,00 tons for a diameter of 40 cm, 166,666 tons for a diameter of 50 cm


Sign in / Sign up

Export Citation Format

Share Document