Rational reduction of hot-rolled 40X steel before cold upsetting

2008 ◽  
Vol 38 (7) ◽  
pp. 522-524 ◽  
Author(s):  
G. V. Pachurin ◽  
A. A. Filippov
Keyword(s):  
2020 ◽  
Vol 157 ◽  
pp. 01006
Author(s):  
Aleksey Filippov ◽  
German Pachurin ◽  
Diana Goncharova ◽  
Gor Gevorgyan ◽  
Mariia Mukhina ◽  
...  

To produce high-quality fasteners for motor group components of automobiles it is necessary to follow the increased requirements to calibrated rolled stock in terms of surface defects. Therefore, the goal of this paper is to study the reasons, types and depth of the surface defects on the calibrated rolled stock from steel 38KHGNM Ø 12.0 mm on the basis of the metallographic analysis. Before cold upsetting, the hot-rolled products are subjected to metal flow and removal of unacceptable surface defects by means of expensive turning operation during which the screw cuts and cracks might appear. It has been defined, that the hot-rolled stock from steel, grade 38KHGNM, diameter 12.0 мм has nonuniform mechanical properties, grooves, laps and partial decarburization on the surface. The heat treatment of the rolled stock with a decarburized layer on the surface contributes to its further decarburization. Poor alignment of calibrated stock during its turning at the turning machine does not enable to completely remove the decarburized layer with minimum skinning of rolled stock. It has been shown that the use of rolled stock from steel 38KHGNM with surface defects and unreasonably high decarburized layer on the surface increases its rejection by 8% and raises the consumption of rolled stock for manufacturing of important fasteners for the motor group of automobiles.


2017 ◽  
Vol 62 (2) ◽  
pp. 551-556 ◽  
Author(s):  
D. Kuc ◽  
J. Szala ◽  
I. Bednarczyk

AbstractThe article presents the results of tests of influence of the thermo-mechanical treatment parameters on the mechanical properties and microstructure of steel 23MnB4 for cold-upsetting. Measurements of the ferrite grains and pearlite colonies were conducted with the use of Met-Ilo program supplemented by additional procedures dedicated to structure analysis of ferritic-pearlitic steel. The process of rolling was conducted in simulation in semi-continuous finishing train arrangement with different temperature and cooling rate. Elaborated procedure of quantitative analysis of microstructure and conducted mechanical properties tests will be used during preparations of modified technologies of wire rod rolling to prepare products made of steel, the microstructure of which is characterised higher utility properties.


Author(s):  
F. A. Khalid ◽  
D. V. Edmonds

The austenite/pearlite growth interface in a model alloy steel (Fe-1 lMn-0.8C nominal wt%) is being investigated. In this particular alloy pearlite nodules can be grown isothermally in austenite that remains stable at room temperature, thus facilitating examination of the transformation interfaces. This study presents preliminary results of thin foil TEM of the austenite/pearlite interface, as part of a programme of aimed at studying alloy carbide precipitation reactions at this interface which can result in significant strengthening of microalloyed low- and medium- carbon steels L Similar studies of interface structure, made on a partially decomposed high- Mn austenitic alloy, have been reported recently.The experimental alloys were made as 50 g argon arc melts using high purity materials and homogenised. Samples were hot- rolled, swaged and machined to 3mm diameter rod, solution treated at 1300 °C for 1 hr and WQ. Specimens were then solutionised between 1250 °C and 1000 °C and isothermally transformed between 610 °C and 550 °C for 10-18 hr and WQ.


1993 ◽  
Vol 90 (7-8) ◽  
pp. 917-922
Author(s):  
Y. Matsuda ◽  
M. Nishino ◽  
J. Ikeda

2020 ◽  
Vol 117 (6) ◽  
pp. 619
Author(s):  
Rui Xu ◽  
Haitao Ling ◽  
Haijun Wang ◽  
Lizhong Chang ◽  
Shengtao Qiu

The transient multiphase flow behavior in a single-strand tundish during ladle change was studied using physical modeling. The water and silicon oil were employed to simulate the liquid steel and slag. The effect of the turbulence inhibitor on the slag entrainment and the steel exposure during ladle change were evaluated and discussed. The effect of the slag carry-over on the water-oil-air flow was also analyzed. For the original tundish, the top oil phase in the impact zone was continuously dragged into the tundish bath and opened during ladle change, forming an emulsification phenomenon. By decreasing the liquid velocities in the upper part of the impact zone, the turbulence inhibitor decreased considerably the amount of entrained slag and the steel exposure during ladle change, thereby eliminating the emulsification phenomenon. Furthermore, the use of the TI-2 effectively lowered the effect of the slag carry-over on the steel cleanliness by controlling the movement of slag droplets. The results from industrial trials indicated that the application of the TI-2 reduced considerably the number of linear inclusions caused by ladle change in hot-rolled strip coils.


2015 ◽  
Vol 112 (3) ◽  
pp. 305 ◽  
Author(s):  
Lian-yun Jiang ◽  
Guo Yuan ◽  
Jian-hui Shi ◽  
Yue Xue ◽  
Di Wu ◽  
...  

2005 ◽  
Vol 10 (2) ◽  
pp. 151-160 ◽  
Author(s):  
J. Kala ◽  
Z. Kala

Authors of article analysed influence of variability of yield strength over cross-section of hot rolled steel member to its load-carrying capacity. In calculation models, the yield strength is usually taken as constant. But yield strength of a steel hot-rolled beam is generally a random quantity. Not only the whole beam but also its parts have slightly different material characteristics. According to the results of more accurate measurements, the statistical characteristics of the material taken from various cross-section points (e.g. from a web and a flange) are, however, more or less different. This variation is described by one dimensional random field. The load-carrying capacity of the beam IPE300 under bending moment at its ends with the lateral buckling influence included is analysed, nondimensional slenderness according to EC3 is λ¯ = 0.6. For this relatively low slender beam the influence of the yield strength on the load-carrying capacity is large. Also the influence of all the other imperfections as accurately as possible, the load-carrying capacity was determined by geometrically and materially nonlinear solution of very accurate FEM model by the ANSYS programme.


2020 ◽  
Vol 50 (5) ◽  
pp. 340-346
Author(s):  
A. V. Emel’yanov ◽  
I. I. Lube ◽  
V. I. Kuznetsov ◽  
D. A. Levchenko

Sign in / Sign up

Export Citation Format

Share Document