More efficient grinding of conical roller-bearing surfaces by the end of a discontinuous wheel

2011 ◽  
Vol 31 (2) ◽  
pp. 185-186
Author(s):  
K. Yu. Luk’yanov
2013 ◽  
Vol 7 (5) ◽  
pp. 550-557 ◽  
Author(s):  
Nobuhiko Henmi ◽  
◽  
Shingo Takeuchi

An acceleration sensor is usually used to examine for roller bearing damage. It is difficult, however, to detect abnormal vibration and examine for roller bearing damage when rotation speed is low. The final target of this study is to establish a bearing damage diagnosis system based on the piezoelectric jerk sensor we developed, which can be used for both low- and highspeed rotations. For this purpose, this paper aims to identify the features of an abnormal vibration detection signal at a low rotation speed, propose a new roller bearing damage diagnosis method that uses the features, and clarify the validity of the method. Experiments are conducted to analyze a scratch purposely made on the outer ring of a conical roller bearing that rotates at the low speeds of 10 or 40 rpm. The results verify the advantages of using the jerk sensor for the bearing damage diagnosis and the validity of the method proposed in this paper.


Author(s):  
Ming Feng ◽  
Kyosuke Ono ◽  
Kenji Mimura

Abstract In this paper, a new variable torque clutch with skewed rollers, in which the cylinder rollers and the inner and outer races are assembled like a conical roller bearing except that each roller axis inclines with an equal angle to the races axis, was introduced and then investigated theoretically and experimentally. The geometry of the race surface was analyzed and the parametric equations of contact line etc. were derived. A roller-wedge model, based on the motion relationship between the skewed rollers and the two races, was proposed for this clutch. From the static equilibrium condition of the roller, the transmitted torque capacity and kinematics characteristics are evaluated properly. Several prototypes of this clutch were manufactured and measured to show the validity of this design idea and the theoretical results. The computation results were found to in good agreement with the experimental data. In addition, the influences of design parameters on the fundamental characteristics of the variable torque clutch are discussed in detail.


2017 ◽  
Vol 54 (7) ◽  
pp. 469-484
Author(s):  
F. Ahrens ◽  
H. Oelschner ◽  
F. M. Ahrens

Alloy Digest ◽  
1958 ◽  
Vol 7 (3) ◽  

Abstract GRAPH-AL is a water or brine hardening graphitic steel used in applications which require shallow hardening properties and resistance to impact loading. This datasheet provides information on composition and hardness as well as fracture toughness. It also includes information on forming, heat treating, and machining. Filing Code: TS-68. Producer or source: Timken Roller Bearing Company.


Alloy Digest ◽  
1963 ◽  
Vol 12 (12) ◽  

Abstract Timken 16-15-6 is a non-magnetic, austenitic, corrosion and heat resistant steel having high creep resistance at elevated temperatures and good corrosion and oxidation resistance. It age-hardens at elevated temperatures after solution quenching, and possesses very high mechanical properties. This datasheet provides information on composition, microstructure, hardness, and tensile properties as well as creep. It also includes information on forming, heat treating, machining, and joining. Filing Code: SS-150. Producer or source: Timken Roller Bearing Company.


Author(s):  
Shashikant Pandey ◽  
Muniyappa Amarnath

Rolling-element bearings are the most commonly used components in all rotating machinery. The variations in the operating conditions such as an increase in the number of operating cycles, load, speed, service temperature, and lubricant degradation result in the development of various defects such as pitting, spalling, scuffing, scoring, etc. The defects that appeared on rolling contact surfaces cause surface deterioration and change in the vibration and sound levels of the bearing system. The present experimental investigations are aimed at assessing the surface fatigue wear that appears on the contact surfaces of roller bearings. The studies considered the estimation of specific film thickness, analysis of surface fatigue wear developed on the rolling-element surfaces, surface roughness analysis, grease degradation analysis using Fourier transform infrared radiation, and vibration and sound signal measurement and analysis. The results obtained from the experimental investigation provide a good correlation between surface wear, vibration, and sound signals with a transition in the lubrication regimes in the Stribeck curve.


Author(s):  
Junshuai Liang ◽  
Ning Li ◽  
Jingyu Zhai ◽  
BaoGang Wen ◽  
Qingkai Han ◽  
...  

In this study, a layering method of carburized ring is presented. A finite element (FE) model for analyzing bearing stiffness characteristics is established considering the residual stress in the carburized layer. The residual stress in the carburized layer of a double-row conical roller bearing is tested and the influence of the distribution of residual stress in carburized layer on the bearing stiffness is investigated. Results show that the residual stress in the carburized layer increases the contact stiffness of the bearing by 5% in the low-load zone and 3% in the high-load zone. The radial stiffness of the bearing is increased by 5% in the low-load zone and 3% in the high-load zone. The axial stiffness is increased by 6%, and the angular stiffness increased by 4%. The larger the thickness of the carburized layer, the greater the residual compressive stress in the carburized layer, the deeper the position of the maximum residual stresses in the carburized layer will lead to the greater stiffness of the bearing.


Sign in / Sign up

Export Citation Format

Share Document