Optimization of the Number, Distribution of Work by Stages, and Solidity of Profile Vane Cascades during Compressor Design

2020 ◽  
Vol 63 (2) ◽  
pp. 295-302
Author(s):  
I. A. Krivosheev ◽  
K. E. Rozhkov ◽  
N. B. Simonov
2012 ◽  
Vol 14 (11) ◽  
pp. 115007 ◽  
Author(s):  
C Sayrin ◽  
I Dotsenko ◽  
S Gleyzes ◽  
M Brune ◽  
J M Raimond ◽  
...  

Author(s):  
Roland Matzgeller ◽  
Richard Pichler

Fluid injection at the tip of highly loaded compressor rotors is known to be effective in suppressing the onset of rotating stall and eventually compressor instability. However, using such stability enhancement methods in a multistage compressor might not only stabilize certain stages but has also an impact on radial and axial matching. In order to account for tip injection during the early stages of compressor design, this paper focuses on the development of a method to model the physical effects underlying tip injection within a streamline curvature method. With the help of system identification it could be shown that a rotor subject to the discrete jets of tip injection adapts to the varying flow conditions according to a first order model. This information was used to generate a time-dependent input for the steady equations used with a streamline curvature method and eventually to model the unsteady response of the rotor to tip injection. Comparing the results obtained with the enhanced streamline curvature model to measurement results, good agreement could be shown which raised confidence that the influence of tip injection on axial and radial matching was sufficiently captured.


Author(s):  
Lars Moberg ◽  
Gianfranco Guidati ◽  
Sasha Savic

This paper focuses on (1) the basic compressor layout based on meridional through flow analysis and (2) the re-design of blades and vanes using sophisticated automated design optimization methods. All tools and processes are integrated into a consistent Compressor Design System, which runs on a powerful Linux cluster. This design system allows designing, analyzing and documenting blade design in mostly automated way. This frees the engineer from repetitive tasks and allows him to concentrate on a physical understanding and improvement of the compressor. The tools and methods are illustrated on the basis of an actual ALSTOM compressor. The main objectives of this upgrade are a modest increase in mass flow and an efficiency improvement. The latter is to be achieved through the replacement of NACA blades by modern Controlled Diffusion Airfoils (CDA). Results are presented including a CFD analysis of the front stages of the baseline and upgrade compressor.


1968 ◽  
Vol 15 (6) ◽  
pp. 1153-1157 ◽  
Author(s):  
Yu. P. Finat'ev ◽  
L. A. Shcherbakov ◽  
N. M. Gorskaya

1992 ◽  
Vol 114 (3) ◽  
pp. 553-560 ◽  
Author(s):  
O. Le´onard ◽  
R. A. Van den Braembussche

A iterative procedure for blade design, using a time marching procedure to solve the unsteady Euler equations in the blade-to-blade plane, is presented. A flow solver, which performs the analysis of the flow field for a given geometry, is transformed into a design method. This is done by replacing the classical slip condition (no normal velocity component) by other boundary conditions, in such a way that the required pressure or Mach number distribution may be imposed directly on the blade. The unknowns are calculated on the blade wall using the so-called compatibility relations. Since the blade shape is not compatible with the required pressure distribution, a nonzero velocity component normal to the blade wall evolves from the new flow calculation. The blade geometry is then modified by resetting the wall parallel to the new flow field, using a transpiration technique, and the procedure is repeated until the calculated pressure distribution has converged to the required one. Examples for both subsonic and transonic flows are presented and show a rapid convergence to the geometry required for the desired Mach number distribution. An important advantage of the present method is the possibility to use the same code for the design and the analysis of a blade.


Sign in / Sign up

Export Citation Format

Share Document