Modeling of Discrete Tip Injection in a Two-Dimensional Streamline Curvature Method

Author(s):  
Roland Matzgeller ◽  
Richard Pichler

Fluid injection at the tip of highly loaded compressor rotors is known to be effective in suppressing the onset of rotating stall and eventually compressor instability. However, using such stability enhancement methods in a multistage compressor might not only stabilize certain stages but has also an impact on radial and axial matching. In order to account for tip injection during the early stages of compressor design, this paper focuses on the development of a method to model the physical effects underlying tip injection within a streamline curvature method. With the help of system identification it could be shown that a rotor subject to the discrete jets of tip injection adapts to the varying flow conditions according to a first order model. This information was used to generate a time-dependent input for the steady equations used with a streamline curvature method and eventually to model the unsteady response of the rotor to tip injection. Comparing the results obtained with the enhanced streamline curvature model to measurement results, good agreement could be shown which raised confidence that the influence of tip injection on axial and radial matching was sufficiently captured.

1984 ◽  
Vol 106 (2) ◽  
pp. 306-312
Author(s):  
S. K. Mao ◽  
D. T. Li

A streamline curvature method for calculating S1 surface flow in turbines is presented. The authors propose a simple method in which a domain of calculation can be changed into an orderly rectangle without making coordinate transformations. Calculation results obtained on subsonic and transonic turbine cascades have been compared with those of experiment and another theory. Good agreement has been found. When calculating blade-to-blade flow velocity at subsonic speed, a function approximation technique can be used in lieu of iteration method in order to reduce calculation time. If the calculated flow section is of a mixed (subsonic-supersonic) flow type, a Boolean expression obtained from the truth table of flow states is proposed to judge the integrated character of the mixed flow section. Similarly, another Boolean expression is used to determine whether there exists a “choking” of the relevant section. Periodical conditions are satisfied by iterating the first-order derivative of stagnation streamline, which is formed simultaneously. It can be proved that the stagnation streamline formed in this way is unique.


Frequenz ◽  
2020 ◽  
Vol 74 (11-12) ◽  
pp. 427-433
Author(s):  
Yaxin Liu ◽  
Feng Wei ◽  
Xiaowei Shi ◽  
Cao Zeng

AbstractIn this paper, a balanced-to-balanced (BTB) branch-slotline directional coupler (DC) is firstly presented, which can realize an arbitrary power division ratios (PDRs). The coupler is composed by microstrip-to-slotline (MS) transition structures and branch-slotline coupled structures. The single-ended to balanced-ended conversion is simplified and easy to implemented by the MS transition structures, which intrinsically leads to the differential-mode (DM) transmission and common-mode (CM) suppression. Moreover, the different PDRs which are controlled by the widths of branch-slotlines can be achieved. In order to verify the feasibility of the proposed design method, two prototype circuits of the proposed coupler with different PDRs are fabricated and measured. The return loss and the isolation of two designs are all better than 10 dB. Moreover, the CM suppressions are greater than 35 dB. A good agreement between the simulation and measurement results is observed.


2021 ◽  
Vol 21 (4) ◽  
pp. 291-298
Author(s):  
Chandana SaiRam ◽  
Damera Vakula ◽  
Mada Chakravarthy

In this paper, a novel compact broadband antenna at UHF frequencies is presented with canonical shapes. Hemispherical, conical and cylindrical shapes have all been considered for antenna configuration. The designed antenna provides an instantaneous frequency range from 370 to 5,000 MHz with omnidirectional characteristics. The antenna was simulated in CST Microwave Studio, fabricated and evaluated; the results are presented. The simulated and measurement results are in good agreement. The antenna has voltage standing wave ratio (VSWR) ≤ 1.9:1 in 400–570 MHz, 2,530–3,740 MHz and 4,180–4,620 MHz; it has VSWR ≤ 3:1 over the operating frequency range 370–5,000 MHz and the measured gain varies from -0.6 to 4.5 dBi over the frequency band. The concept of canonical-shaped antenna elements and the incorporation of triple sleeves resulted in a reduction of the length of the antenna by 62% compared to the length of a half-wave dipole antenna designed at the lowest frequency. The antenna can be used for trans-receiving applications in wireless communication.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Zengrui Li ◽  
Xiaole Kang ◽  
Jianxun Su ◽  
Qingxin Guo ◽  
Yaoqing (Lamar) Yang ◽  
...  

The characteristics of a novel antipodal Vivaldi antenna array mounted on a dielectric cone are presented. By employing antipodal Vivaldi antenna element, the antenna array shows ultrawide bandwidth and end-fire radiation characteristics. Our simulations show that the cone curvature has an obvious influence on the performance of the conformal antenna, in terms of both the bandwidth and the radiation patterns. The thickness and permittivity of the dielectric cone have an effect on the bandwidth of the conformal antenna. Measurement results of both single antenna and conformal antenna array show a good agreement with the simulated results. The measured conformal antenna can achieve a −10 dBS11with bandwidth of 2.2–12 GHz and demonstrate a typical end-fire radiation beam. These findings provide useful guidelines and insights for the design of wideband end-fire antennas mounted on a dielectric cone.


Frequenz ◽  
2019 ◽  
Vol 73 (9-10) ◽  
pp. 301-306
Author(s):  
Xuehan Hu ◽  
Feng Wei ◽  
Jiawen Hao ◽  
Xiaowei Shi

AbstractIn this paper, a tunable power divider (PD) with a good band-pass filtering response using quarter-wavelength stepped impedance resonators (SIRs) is presented. By appropriately adjusting the impedance and electrical length ratio of SIR, the proposed structure can achieve wide stopband performance. Meanwhile, four varactor diodes are loaded to the external resonators to achieve electrical reconfiguration. In addition, a pair of transmission zeros (TZs) can be generated by applying source and load coupling on each side of the passband, which can effectively improve passband selectivity and out-of-band rejection. In order to verify the feasibility of the proposed design method, a prototype circuit of the proposed filtering power divider (FPD) with tunable center frequency is simulated, fabricated and measured. A good agreement between the simulation and measurement results is observed.


1987 ◽  
Vol 109 (3) ◽  
pp. 213-217 ◽  
Author(s):  
S. Abdallah ◽  
R. E. Henderson

Quasi three dimensional blade-to-blade solutions for stators and rotors of turbomachines are obtained using the Streamline Curvature Method (SLCM). The first-order velocity gradient equation of the SLCM, traditionally solved for the velocity field, is reformulated as a second-order elliptic differential equation and employed in tracing the streamtubes throughout the flow field. The equation of continuity is then used to calculate the velocity. The present method has the following advantages. First, it preserves the ellipticity of the flow field in the solution of the second-order velocity gradient equation. Second, it eliminates the need for curve fitting and strong smoothing under-relaxation in the classical SLCM. Third, the prediction of the stagnation streamlines is a straightforward matter which does not complicate the present procedure. Finally, body-fitted curvilinear coordinates (streamlines and orthogonals or quasi-orthogonals) are naturally generated in the method. Numerical solutions are obtained for inviscid incompressible flow in rotating and non-rotating passages and the results are compared with experimental data.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Duolong Wu ◽  
Adriana Serban ◽  
Magnus Karlsson ◽  
Shaofang Gong

A three-port power divider consisting of a directional coupler, a Wilkinson power divider, and two transmission lines connected to them is proposed. Theoretical analysis reveals that highly unequal power division can be achieved by a feedback mechanism of two transmission lines along with the coupling coefficient of the directional coupler and the power division ratio of the Wilkinson power divider. The three-port power divider inherits the performance characteristics of high isolation, low reflection coefficients at all ports, and the minimum number of components. The proposed power divider is designed at 5.8 GHz and fabricated and evaluated through measurements. It demonstrates that electromagnetic simulation results are in good agreement with theoretical prediction and measurement results. The three-port power divider is compact in the planar form, so it can be easily integrated into radio frequency front ends.


2017 ◽  
Vol 9 (7) ◽  
pp. 1467-1471 ◽  
Author(s):  
Leila Noori ◽  
Abbas Rezaei

In this paper, a microstrip diplexer composed of two similar resonators is designed. The proposed resonator is consisting of four microstrip cells, which are connected to a coupled lines structure. In order to select a suitable geometric structure, first, all cells are assumed as undefined structures where there is a lack of basic information about their geometry and dimensions. Then, an equivalent LC circuit of the coupled lines is introduced and analyzed to estimate the general structure of the resonator respect to a requested resonance frequency. The proposed diplexer is designed to operate at 2.36 and 4 GHz for wireless applications. The insertion losses (S21 and S31) are decreased significantly at the resonance frequencies, so that they are 0.2 and 0.4 dB at 2.36 and 4 GHz, respectively. The designed diplexer is fabricated and measured and the measurement results are in a good agreement with the simulations.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Thomas Kaufmann ◽  
Christophe Fumeaux

A low-profile monopole antenna with height belowλ0/16is proposed. The antenna is based on a square substrate-integrated cavity radiating through apertures in its four side walls. This effectively creates a small square loop of magnetic currents, which radiates omnidirectionally as an electric monopole. The antenna cavity has a side length of less thanλ0/3and thus resonates in the monomode region, in a fundamentalTM11mode. This means that the structure is robust in terms of feeding and manufacturing tolerances, as no parasitic modes can be excited. The designs of the cavity and the feed are introduced in detail. The measurement results from a manufactured prototype operating at 5.9 GHz show good agreement with simulations and validate the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document