On Modeling the Operation of Slotted High-Lift Device Elements in a Spin Experiment at Low Reynolds Numbers

2021 ◽  
Vol 64 (3) ◽  
pp. 449-454
Author(s):  
G. N. Bogomazova ◽  
M. A. Golovkin ◽  
A. A. Efremov ◽  
O. V. Pavlenko
2006 ◽  
Vol 129 (2) ◽  
pp. 340-347 ◽  
Author(s):  
Maria Vera ◽  
Xue Feng Zhang ◽  
Howard Hodson ◽  
Neil Harvey

This paper presents the second part of an investigation of the combined effects of unsteadiness and surface roughness on an aft-loaded ultra-high-lift low-pressure turbine (LPT) profile at low Reynolds numbers. The investigation has been performed using low- and high-speed cascade facilities. The low- and high-speed profiles have been designed to have the same normalized isentropic Mach number distribution. The low-speed results have been presented in the first part (Zhang, Vera, Hodson, and Harvey, 2006, ASME J. Turbomach., 128, pp. 517–527). The current paper examines the effect of different surface finishes on an aft-loaded ultra-high-lift LPT profile at Mach and Reynolds numbers representative of LPT engine conditions. The surface roughness values are presented along with the profile losses under steady and unsteady inflow conditions. The results show that the use of a rough surface finish can be used to reduce the profile loss. In addition, the results show that the same quantitative values of losses are obtained at high- and low-speed flow conditions. The latter proves the validity of the low-speed approach for ultra-high-lift profiles for the case of an exit Mach number of the order of 0.64. Hot-wire measurements were carried out to explain the effect of the surface finish on the wake-induced transition mechanism.


Author(s):  
Maria Vera ◽  
Xue Feng Zhang ◽  
Howard Hodson ◽  
Neil Harvey

This paper presents the second part of an investigation of the combined effects of unsteadiness and surface roughness on an aft-loaded ultra high lift low pressure turbine (LPT) profile at low Reynolds numbers. The investigation has been performed using low-speed and high-speed cascade facilities. The low speed and the high speed profiles have been designed to have the same normalized isentropic Mach number distribution. The low speed results have been presented in Part 1 of this paper. The current paper examines the effect of different surface finishes on an aft-loaded ultra-high-lift LPT profile at Mach and Reynolds numbers representative of LPT engine conditions. The surface roughness values are presented along with the profile losses under steady and unsteady inflow conditions. The results show that the use of a rough surface finish might reduce the profile loss. In addition, the results show that the same quantitative values of losses are obtained at high and low speed flow conditions. The latter proves the validity of the low speed approach for ultra high lift profiles for the case of an exit Mach number of the order of 0.64. Hot wire measurements were carried out to explain the effect of the surface finish on the wake induced transition mechanism.


Author(s):  
Xue Feng Zhang ◽  
Maria Vera ◽  
Howard Hodson ◽  
Neil Harvey

An experimental study was conducted to improve the performance of an aft-loaded ultra-high-lift low-pressure turbine blade known as U2 at low Reynolds numbers. This was achieved by manipulation of the laminar-turbulent transition process on the suction surface. The U2 profile was designed to meet the targets of reduced cost, weight and fuel burn of aircraft engines. The studies were conducted on both low-speed and high-speed experimental facilities under the unsteady flow conditions with upstream passing wakes. The current paper presents the low-speed investigation results. On the smooth suction surface, the incoming wakes are not strong enough to suppress the separation bubble due to the strong adverse pressure gradient on the suction surface and the low wake passing frequency, which allows the separation between the wakes more time to re-establish. Therefore, the profile losses of this ultra-high-lift blade are not as low as conventional or high-lift blades at low Reynolds numbers even in unsteady flows. Two different types of passive separation control devices, i.e. surface trips and air jets, were investigated to further improve the blade performance. The measurement results show that the profile losses can be further reduced to the levels similar to those of the high-lift and conventional blades due to the aft-loaded nature of this ultra-high-lift blade. Detailed surveys of the blade surface boundary layer developments showed that the loss reduction was due to the suppression of the separation underneath the wakes, the effect of the strengthened calmed region and the smaller separation bubble between wakes.


2005 ◽  
Vol 128 (3) ◽  
pp. 517-527 ◽  
Author(s):  
Xue Feng Zhang ◽  
Maria Vera ◽  
Howard Hodson ◽  
Neil Harvey

An experimental study was conducted to improve the performance of an aft-loaded ultra-high-lift low-pressure turbine blade known as U2 at low Reynolds numbers. This was achieved by manipulation of the laminar-turbulent transition process on the suction surface. The U2 profile was designed to meet the targets of reduced cost, weight and fuel burn of aircraft engines. The studies were conducted on both low-speed and high-speed experimental facilities under the unsteady flow conditions with upstream passing wakes. The current paper presents the low-speed investigation results. On the smooth suction surface, the incoming wakes are not strong enough to suppress the separation bubble due to the strong adverse pressure gradient on the suction surface and the low wake passing frequency, which allows the separation between the wakes more time to re-establish. Therefore, the profile losses of this ultra-high-lift blade are not as low as conventional or high-lift blades at low Reynolds numbers even in unsteady flows. Two different types of passive separation control devices, i.e., surface trips and air jets, were investigated to further improve the blade performance. The measurement results show that the profile losses can be further reduced to the levels similar to those of the high-lift and conventional blades due to the aft-loaded nature of this ultra-high-lift blade. Detailed surveys of the blade surface boundary layer developments showed that the loss reduction was due to the suppression of the separation underneath the wakes, the effect of the strengthened calmed region and the smaller separation bubble between wakes.


2020 ◽  
Vol 21 (6) ◽  
pp. 621
Author(s):  
Veerapathiran Thangaraj Gopinathan ◽  
John Bruce Ralphin Rose ◽  
Mohanram Surya

Aerodynamic efficiency of an airplane wing can be improved either by increasing its lift generation tendency or by reducing the drag. Recently, Bio-inspired designs have been received greater attention for the geometric modifications of airplane wings. One of the bio-inspired designs contains sinusoidal Humpback Whale (HW) tubercles, i.e., protuberances exist at the wing leading edge (LE). The tubercles have excellent flow control characteristics at low Reynolds numbers. The present work describes about the effect of tubercles on swept back wing performance at various Angle of Attack (AoA). NACA 0015 and NACA 4415 airfoils are used for swept back wing design with sweep angle about 30°. The modified wings (HUMP 0015 A, HUMP 0015 B, HUMP 4415 A, HUMP 4415 B) are designed with two amplitude to wavelength ratios (η) of 0.1 & 0.24 for the performance analysis. It is a novel effort to analyze the tubercle vortices along the span that induce additional flow energy especially, behind the tubercles peak and trough region. Subsequently, Co-efficient of Lift (CL), Co-efficient of Drag (CD) and boundary layer pressure gradients also predicted for modified and baseline (smooth LE) models in the pre & post-stall regimes. It was observed that the tubercles increase the performance of swept back wings by the enhanced CL/CD ratio in the pre-stall AoA region. Interestingly, the flow separation region behind the centerline of tubercles and formation of Laminar Separation Bubbles (LSB) were asymmetric because of the sweep.


2010 ◽  
Vol 1 (1-2) ◽  
pp. 15-20 ◽  
Author(s):  
B. Bolló

Abstract The two-dimensional flow around a stationary heated circular cylinder at low Reynolds numbers of 50 < Re < 210 is investigated numerically using the FLUENT commercial software package. The dimensionless vortex shedding frequency (St) reduces with increasing temperature at a given Reynolds number. The effective temperature concept was used and St-Re data were successfully transformed to the St-Reeff curve. Comparisons include root-mean-square values of the lift coefficient and Nusselt number. The results agree well with available data in the literature.


Sign in / Sign up

Export Citation Format

Share Document