scholarly journals DETECTION OF INFECTIONS ON BIOMEDICAL DEVICES AND PREVENTION WITH NANO TECHNOLOGY BASED BIO MATERIALS

2021 ◽  
Vol 10 (11 (SPECIAL ISSUE)) ◽  
2011 ◽  
Vol 131 (12) ◽  
pp. 404-408
Author(s):  
Jun Ohta ◽  
Takuma Kobayashi ◽  
Toshihiko Noda ◽  
Kiyotaka Sasagawa ◽  
Takashi Tokuda
Keyword(s):  

Author(s):  
Oscar Botero ◽  
Liliana Guarin ◽  
Edgar Mora ◽  
Farid Cortes ◽  
Carlos Franco ◽  
...  
Keyword(s):  

2019 ◽  
Author(s):  
Luke Clifton ◽  
Nicoló Paracini ◽  
Arwel V. Hughes ◽  
Jeremy H. Lakey ◽  
Nina-Juliane Seinke ◽  
...  

<p>We present a reliable method for the fabrication of fluid phase unsaturated bilayers which are readily self-assembled on charged self-assembled monolayer (SAM) surfaces producing high coverage floating supported bilayers where the membrane to surface distance could be controlled with nanometer precision. Vesicle fusion was used to deposit the bilayers onto anionic SAM coated surfaces. Upon assembly the bilayer to SAM solution interlayer thickness was 7-10 Å with evidence suggesting that this layer was present due to SAM hydration repulsion of the bilayer from the surface. This distance could be increased using low concentrations of salts which caused the interlayer thickness to enlarge to ~33 Å. Reducing the salt concentration resulted in a return to a shorter bilayer to surface distance. These accessible and controllable membrane models are well suited to a range of potential applications in biophysical studies, bio-sensors and Nano-technology.</p><br>


2009 ◽  
Vol 21 (5) ◽  
pp. 69-76
Author(s):  
N. Paseshnikova ◽  
◽  
E. Maltsev ◽  
O. Moroz ◽  
◽  
...  
Keyword(s):  

Author(s):  
Thomas M. Moore

Abstract The availability of the focused ion beam (FIB) microscope with its excellent imaging resolution, depth of focus and ion milling capability has made it an appealing platform for materials characterization at the sub-micron, or "nano" level. This article focuses on nanomechanical characterization in the FIB, which is an extension of the FIB capabilities into the realm of nano-technology. It presents examples that demonstrate the power and flexibility of nanomechanical testing in the FIB or scanning electron microscope with a probe shaft that includes a built-in strain gauge. Loads that range from grams to micrograms are achievable. Calibration is limited only by the availability of calibrated load cells in the smallest load ranges. Deflections in the range of a few nanometers range can be accurately applied. Simultaneous electrical, mechanical, and visual data can be combined to provide a revealing study of physical behavior of complex and dynamic nanostructures.


2019 ◽  
Vol 25 (34) ◽  
pp. 3608-3619 ◽  
Author(s):  
Uzma Arif ◽  
Sajjad Haider ◽  
Adnan Haider ◽  
Naeem Khan ◽  
Abdulaziz A. Alghyamah ◽  
...  

Background: Biocompatible polymers are gaining great interest in the field of biomedical applications. The term biocompatibility refers to the suitability of a polymer to body and body fluids exposure. Biocompatible polymers are both synthetic (man-made) and natural and aid in the close vicinity of a living system or work in intimacy with living cells. These are used to gauge, treat, boost, or substitute any tissue, organ or function of the body. A biocompatible polymer improves body functions without altering its normal functioning and triggering allergies or other side effects. It encompasses advances in tissue culture, tissue scaffolds, implantation, artificial grafts, wound fabrication, controlled drug delivery, bone filler material, etc. Objectives: This review provides an insight into the remarkable contribution made by some well-known biopolymers such as polylactic-co-glycolic acid, poly(ε-caprolactone) (PCL), polyLactic Acid, poly(3- hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), Chitosan and Cellulose in the therapeutic measure for many biomedical applications. Methods: : Various techniques and methods have made biopolymers more significant in the biomedical fields such as augmentation (replaced petroleum based polymers), film processing, injection modeling, blow molding techniques, controlled / implantable drug delivery devices, biological grafting, nano technology, tissue engineering etc. Results: The fore mentioned techniques and other advanced techniques have resulted in improved biocompatibility, nontoxicity, renewability, mild processing conditions, health condition, reduced immunological reactions and minimized side effects that would occur if synthetic polymers are used in a host cell. Conclusion: Biopolymers have brought effective and attainable targets in pharmaceutics and therapeutics. There are huge numbers of biopolymers reported in the literature that has been used effectively and extensively.


2014 ◽  
Vol 11 (2) ◽  
pp. 116-120 ◽  
Author(s):  
Yung-Sheng Lin ◽  
Ming-Yuan-Lee ◽  
Chih-Hui Yang ◽  
Keng-Shiang Huang

2021 ◽  
Vol 13 (3) ◽  
pp. 168781402110065
Author(s):  
Hu Ge-JiLe ◽  
Sumaira Qayyum ◽  
Faisal Shah ◽  
M Ijaz Khan ◽  
Sami Ullah Khan

The growing development in the thermal engineering and nano-technology, much attention has been paid on the thermal properties of nanoparticles which convey many applications in industrial, technological and medical era of sciences. The noteworthy applications of nano-materials included heat transfer enhancement, thermal energy, solar systems, cooling of electronics, controlling the heat mechanisms etc. Beside this, entropy generation is an optimized scheme which reflects significances in thermodynamics systems to control the higher energy efficiency. On this end, present work presents the slip flow of Jeffrey nanofluid over a stretching sheet with applications of activation energy and viscous dissipation. The entropy generation features along with Bejan number significance is also addressed in present analysis. Buongiorno model of nanofluid is used to discuss the heat and mass transfer. The formulated flow equations are attained into non-dimensional form. An appropriate ND MATHEMATICA built-in scheme is used to find the solution. The solution confirmation is verified by performing the error analysis. For developed flow model and impacted parameters, a comprehensive graphical analysis is performed. It is observed that slip phenomenon is used to decays the velocity profile. Temperature and concentration are in direct relation with Brownian motion parameter and activation energy respectively. Entropy and Bejan number have same results for greater diffusion parameter.


Sign in / Sign up

Export Citation Format

Share Document