ESTIMATION OF POWER PARAMETERS OF MSR TECHNOLOGY IMPLEMENTATION UNDER CONDITIONS OF CONTINUOUS CASTING SECTION MACHINE WITH ADDITIONAL SHEAR EFFECT

Author(s):  
E. N. Smyrnov ◽  
◽  
V. A. Skliar ◽  
D. I. Bogadevich ◽  
A. N. Smyrnov ◽  
...  
2015 ◽  
Vol 727-728 ◽  
pp. 513-516
Author(s):  
Lin Hui Yu ◽  
Ming Gang Shen ◽  
Ji Dong Li ◽  
Yi Yong Wang ◽  
Jian Ming Su ◽  
...  

Crystallizer steel belt feeding technology make use of melt’s fusion decalescence, controlling the distribution of melt temperature field, restrain the columnar crystal’s growing to eliminate the composition segregation and internal loose of continuous casting. And it will improve the continuous casting’s quality. By discussing the effect of casting speed, the size of steel, casting section and other factors on the steel belt feeding speed, making comparison of different casting section get strip suitable feeding speed and range of strip size, combining with a steel for steel strip feeding test mold, its theoretical and practical production results the basic agreement


Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1196
Author(s):  
Fei Yuan ◽  
Shuangping Wu ◽  
Wei Song ◽  
Anjun Xu

Pursuing the intellectualization of a steelmaking plant and developing a charge plan of the steelmaking-continuous casting section are critical in metallurgy engineering. Herein, we aim to develop a charge plan model based on the operation of the steelmaking-continuous casting section to minimize the penalty values of residual materials; of a contract not selected and the penalty values that is caused by the difference in steel grades, the width and the delivery time between slabs in the same charge. We introduce an improved elitist genetic algorithm (IEGA), define the matching chromosome coding and decoding strategies, and suggest improving the selection, crossover, and mutation operators. Finally, we verify the proposed model and algorithm on the production data of a real enterprise. We clarify the applicability of developing a charge plan based on model analysis and demonstrate the effectiveness of the IEGA through algorithm analysis.


2009 ◽  
Vol 106 (6) ◽  
pp. 242-247
Author(s):  
C. Damerval ◽  
H. Tavernier ◽  
L. Avedian ◽  
P. Disant ◽  
P. Delfosse ◽  
...  

Author(s):  
A. T. Kunakbaeva ◽  
A. M. Stolyarov ◽  
M. V. Potapova

Free-cutting steel gains specific working properties thanks to the high content of sulfur and phosphorus. These elements, especially sulfur, have a rather high tendency to segregation. Therefore, segregation defects in free-cutting steel continuously cast billets can be significantly developed. The aim of the work was to study the influence of the chemical composition of freecutting steel and casting technological parameters on the quality of the macrostructure of continuously cast billets. A metallographic assessment of the internal structure of cast metal made of free-cutting steel and data processing by application of correlation and regression analysis were the research methods. The array of production data of 43 heats of free-cutting steel of grade A12 was studied. Steel casting on a five-strand radial type continuous casting machine was carried out by various methods of metal pouring from tundish into the molds. Metal of 19 heats was poured with an open stream, and 24 heats – by a closed stream through submerged nozzles with a vertical hole. High-quality billets had a cross-sectional size of 150×150 mm. The macrostructure of high-quality square billets made of free-cutting steel of A12 grade is characterized by the presence of central porosity, axial segregation and peripheral point contamination, the degree of development of which was in the range from 1.5 to 2.0 points, segregation cracks and strips – about 1.0 points. In the course of casting with an open stream, almost all of these defects are more developed comparing with the casting by a closed stream. As a result of correlation and regression analysis, linear dependences of the development degree of segregation cracks and strips both axial and angular on the sulfur content in steel and on the ratio of manganese content to sulfur content were established. The degree of these defects development increases with growing of sulfur content in steel of A12 grade. These defects had especially strong development when sulfur content in steel was of more than 0.10%. To improve the quality of cast metal, it is necessary to have the ratio of the manganese content to the sulfur content in the metal more than eight.


Author(s):  
C. Ortner ◽  
L. Martins Demuner ◽  
M. Schuster ◽  
O. Lang ◽  
F. Ramstorfer

Sign in / Sign up

Export Citation Format

Share Document