Study of mechanical properties of samples from heat-resistant copper BrKh 0.8 alloy obtained by selective laser melting

2021 ◽  
pp. 66-70
Author(s):  
A. G. Grigoryants ◽  
D. S. Kolchanov ◽  
A. A. Drenin ◽  
A. O. Denezhkin

Selective laser melting (SLM) technology is a promising method for manufacturing complex parts from many metals and alloys. Copper and copper alloys are widely used in industry due to its high thermal conductivity and low resistivity. The use of chromium as an alloying element can increase the heat resistance of copper and its mechanical properties. In this work, samples were made of heat-resistant copper alloy ПР-БрХ to determine their mechanical properties and porosity values. Before the experiments, particle size, morphological and chemical analysis of the powder was carried out. Samples were prepared using the Additive Solutions D250 selective laser melting facility and a multidirectional laser scanning strategy for the powder layer. As a result of the experiments, samples with porosity of less than 5% were obtained. Which were then subjected to tensile tests and computed tomography. However, some samples were subjected to heat treatment. The test results showed that σ0.2 averages 166.3 MPa, σв — 198 MPa, σp — 42 MPa, ψ — 8.9%, δ — 3.2%. It was also revealed that heat treatment of samples leads to a decrease in strength properties while maintaining plastic. The research was conducted under financial support of the Russian Foundation of Basic Research within the framework of the scientific project No. 18-38-00940\19.

2018 ◽  
Vol 284 ◽  
pp. 615-620 ◽  
Author(s):  
R.M. Baitimerov ◽  
P.A. Lykov ◽  
L.V. Radionova

TiAl6V4 titanium base alloy is widely used in aerospace and medical industries. Specimens for tensile tests from TiAl6V4 with porosity less than 0.5% was fabricated by selective laser melting (SLM). Specimens were treated using two heat treatment procedures, third batch of specimens was tested in as-fabricated statement after machining. Tensile tests were carried out at room temperature. Microstructure and mechanical properties of SLM fabricated TiAl6V4 after different heat treatments were investigated.


MRS Advances ◽  
2019 ◽  
Vol 4 (44-45) ◽  
pp. 2431-2439
Author(s):  
N. Iqbal ◽  
E. Jimenez-Melero ◽  
U. Ankalkhope ◽  
J. Lawrence

ABSTRACTThe microstructure homogeneity and variability in mechanical properties of 316L stainless steel components fabricated using selective laser melting (SLM) have been investigated. The crack free, 99.9% dense samples were made starting from SS316L alloy powder, and the melt pool morphology was analysed using optical and scanning electron microscopy. Extremely fast cooling rates after laser melting/solidification process, accompanied by slow diffusion of alloying elements, produced characteristic microstructures with colonies of cellular substructure inside grains, grown along the direction of the principal thermal gradient during laser scanning. In some areas of the microstructure, a significant number of precipitates were observed inside grains and at grain boundaries. Micro hardness measurements along the build direction revealed slight but gradual increase in hardness along the sample height. Uniaxial tensile tests of as manufactured samples showed the effect of un-melted areas causing scatter in room-temperature mechanical properties of samples extracted from the same SLM build. The ultimate tensile strength (UTS) varied from 458MPa to 509MPa along with a variation in uniform elongation from 3.3% to 14.4%. The UTS of a sample exposed to the Cl- rich corrosion environment at 46oC temperature revealed a similar strength as of the original sample, indicating good corrosion resistance of SLM samples under those corrosion conditions.


2017 ◽  
Vol 44 (9) ◽  
pp. 0902001
Author(s):  
肖振楠 Xiao Zhennan ◽  
刘婷婷 Liu Tingting ◽  
廖文和 Liao Wenhe ◽  
张长东 Zhang Changdong ◽  
杨涛 Yang Tao

2019 ◽  
Vol 5 ◽  
pp. 23 ◽  
Author(s):  
Anne-Helene Puichaud ◽  
Camille Flament ◽  
Aziz Chniouel ◽  
Fernando Lomello ◽  
Elodie Rouesne ◽  
...  

Additive manufacturing (AM) is rapidly expanding in many industrial applications because of the versatile possibilities of fast and complex fabrication of added value products. This manufacturing process would significantly reduce manufacturing time and development cost for nuclear components. However, the process leads to materials with complex microstructures, and their structural stability for nuclear application is still uncertain. This study focuses on 316L stainless steel fabricated by selective laser melting (SLM) in the context of nuclear application, and compares with a cold-rolled solution annealed 316L sample. The effect of heat treatment (HT) and hot isostatic pressing (HIP) on the microstructure and mechanical properties is discussed. It was found that after HT, the material microstructure remains mostly unchanged, while the HIP treatment removes the materials porosity, and partially re-crystallises the microstructure. Finally, the tensile tests showed excellent results, satisfying RCC-MR code requirements for all AM materials.


2017 ◽  
Vol 6 (1) ◽  
Author(s):  
Yachao Wang ◽  
Jing Shi ◽  
Shiqiang Lu ◽  
Weihan Xiao

Graphene possesses many outstanding properties, such as high strength and light weight, making it an ideal reinforcement for metal matrix composite (MMCs). Meanwhile, fabricating MMCs through laser-assisted additive manufacturing (LAAM) has attracted much attention in recent years due to the advantages of low waste, high precision, short production lead time, and high flexibility. In this study, graphene-reinforced aluminum alloy AlSi10 Mg is fabricated using selective laser melting (SLM), a typical LAAM technique. Composite powders are prepared using high-energy ball milling. Room temperature tensile tests are conducted to evaluate the mechanical properties. Scanning electron microscopy observations are conducted to investigate the microstructure and fracture surface of obtain composite. It is found that adding graphene nanoplatelets (GNPs) significantly increases porosity, which offsets the enhancement of tensile performance as a result of GNPs addition. Decoupling effort is then made to separate the potential beneficial effects from GNPs addition and the detrimental effect from porosity increase. For this purpose, the quantitative relationship between porosity and material strength is obtained. Taking into consideration the strength reduction caused by the increased porosity, the strengthening effect of GNPs turns out to be significant, which reaches 60.2 MPa.


2018 ◽  
Vol 764 ◽  
pp. 1056-1071 ◽  
Author(s):  
Xingchen Yan ◽  
Shuo Yin ◽  
Chaoyue Chen ◽  
Chunjie Huang ◽  
Rodolphe Bolot ◽  
...  

2018 ◽  
Vol 770 ◽  
pp. 179-186 ◽  
Author(s):  
Jing Bo Gao ◽  
Xiao Li Zhao ◽  
Ju Kun Yue ◽  
Meng Chao Qi ◽  
De Liang Zhang

Ti-6Al-4V (wt%) alloy samples with dog-bone and box shapes respectively were fabricated by selective laser melting (SLM). The microstructures and mechanical properties of the 3D printed Ti-6Al-4V samples with and without heat treatment were characterized and tested. The microstructures of the as-fabricated dog-bone shaped samples were mainly composed of acicular α’ phase. After annealing at 700°C, the acicular α’ phase changed into an α/β lamellar structure. After solution treatment at 955°C, water quenching and aging at 550°C, the microstructure was mainly composed of primary α phase and α/β lamellar structure. The optimum heat treatment is annealing, and the mechanical properties of the annealed sample are as follows: yield strength: 1015 MPa, ultimate tensile strength (UTS): 1083 MPa and elongation to fracture: 7.9%. The microstructures of the box-shaped samples after annealing mainly consist of α phase and α/β lamellar structure. When stretched along the direction parallel to the crystal growth direction, the yield strength and UTS of the sample are 1054 and 1090 MPa,and its elongation to fracture is 6.3%. When stretched along the direction perpendicular to the crystal growth direction, the yield strength and UTS of the sample are 1019 and 1068 MPa respectively, and its elongation to fracture is 8.7%.


Sign in / Sign up

Export Citation Format

Share Document