A Technique for Freeze-Fracturing of the Organ of Corti

1985 ◽  
Vol 99 (sup423) ◽  
pp. 36-42 ◽  
Author(s):  
Berit Engström ◽  
Maud Hoffstedt ◽  
Dan Bagger-sjöbäck
1976 ◽  
Vol 82 (1-6) ◽  
pp. 57-69 ◽  
Author(s):  
S. Iurato ◽  
K. Franke ◽  
L. Luciano ◽  
G. Wermbter ◽  
E. Pannese ◽  
...  

Author(s):  
R.J. Mount ◽  
R.V. Harrison

The sensory end organ of the ear, the organ of Corti, rests on a thin basilar membrane which lies between the bone of the central modiolus and the bony wall of the cochlea. In vivo, the organ of Corti is protected by the bony wall which totally surrounds it. In order to examine the sensory epithelium by scanning electron microscopy it is necessary to dissect away the protective bone and expose the region of interest (Fig. 1). This leaves the fragile organ of Corti susceptible to physical damage during subsequent handling. In our laboratory cochlear specimens, after dissection, are routinely prepared by the O-T- O-T-O technique, critical point dried and then lightly sputter coated with gold. This processing involves considerable specimen handling including several hours on a rotator during which the organ of Corti is at risk of being physically damaged. The following procedure uses low cost, readily available materials to hold the specimen during processing ,preventing physical damage while allowing an unhindered exchange of fluids.Following fixation, the cochlea is dehydrated to 70% ethanol then dissected under ethanol to prevent air drying. The holder is prepared by punching a hole in the flexible snap cap of a Wheaton vial with a paper hole punch. A small amount of two component epoxy putty is well mixed then pushed through the hole in the cap. The putty on the inner cap is formed into a “cup” to hold the specimen (Fig. 2), the putty on the outside is smoothed into a “button” to give good attachment even when the cap is flexed during handling (Fig. 3). The cap is submerged in the 70% ethanol, the bone at the base of the cochlea is seated into the cup and the sides of the cup squeezed with forceps to grip it (Fig.4). Several types of epoxy putty have been tried, most are either soluble in ethanol to some degree or do not set in ethanol. The only putty we find successful is “DUROtm MASTERMENDtm Epoxy Extra Strength Ribbon” (Loctite Corp., Cleveland, Ohio), this is a blue and yellow ribbon which is kneaded to form a green putty, it is available at many hardware stores.


Author(s):  
Cesar D. Fermin ◽  
Hans-Peter Zenner

Contraction of outer and inner hair cells (OHC&IHC) in the Organ of Corti (OC) of the inner ear is necessary for sound transduction. Getting at HC in vivo preparations is difficult. Thus, isolated HCs have been used to study OHC properties. Even though viability has been shown in isolated (iOHC) preparations by good responses to current and cationic stimulation, the contribution of adjoining cells can not be explained with iOHC preparations. This study was undertaken to examine changes in the OHC after expossure of the OHC to high concentrations of potassium (K) and sodium (Na), by carefully immersing the OC in either artifical endolymph or perilymph. After K and Na exposure, OCs were fixed with 3% glutaraldehyde, post-fixed in osmium, separated into base, middle and apex and embedded in Araldite™. One μm thick sections were prepared for analysis with the light and E.M. Cross sectional areas were measured with Bioquant™ software.Potassium and sodium both cause isolated guinea pig OHC to contract. In vivo high K concentration may cause uncontrolled and sustained contractions that could contribute to Meniere's disease. The behavior of OHC in the vivo setting might be very different from that of iOHC. We show here changes of the cell cytosol and cisterns caused by K and Na to OHC in situs. The table below shows results from cross sectional area measurements of OHC from OC that were exposed to either K or Na. As one would expect, from the anatomical arrangement of the OC, OHC#l that are supported by rigid tissue would probably be displaced (move) less than those OHC located away from the pillar. Surprisingly, cells in the middle turn of the cochlea changed their surface areas more than those at either end of the cochlea. Moreover, changes in surface area do not seem to differ between K and Na treated OCs.


Author(s):  
N. Seki ◽  
Y. Toyama ◽  
T. Nagano

It is believed that i ntramembra.nous sterols play an essential role in membrane stability and permeability. To investigate the distribution changes of sterols in sperm membrane during epididymal maturation and capacitation, filipin has been used as a cytochemical probe for the detection for membrane sterols. Using this technique in combination with freeze fracturing, we examined the boar spermatozoa under various physiological conditions.The spermatozoa were collected from: 1) caput, corpus and cauda epididymides, 2) sperm rich fraction of ejaculates, and 3)the uterus 2hr after natural coition. They were fixed with 2.5% glutaraldehyde in 0.05M cacodylate buffer (pH 7.4), and treated with the filipin solution (final concentration : 0.02.0.05%) for 24hr at 4°C with constant agitation. After the filipin treatment, replicas were made by conventional freeze-fracture technique. The density of filipin-sterol complexes (FSCs) was determined in the E face of the plasma membrane of head regions.


Author(s):  
A.J. Verkleij

Freeze-fracturing splits membranes into two helves, thus allowing an examination of the membrane interior. The 5-10 rm particles visible on both monolayers are widely assumed to be proteinaceous in nature. Most membranes do not reveal impressions complementary to particles on the opposite fracture face, if the membranes are fractured under conditions without etching. Even if it is considered that shadowing, contamination or fracturing itself might obscure complementary pits', there is no satisfactory explanation why under similar physical circimstances matching halves of other membranes can be visualized. A prominent example of uncomplementarity is found in the erythrocyte manbrane. It is wall established that band 3 protein and possibly glycophorin represents these nonccmplanentary particles. On the other hand a number of membrane types show pits opposite the particles. Scme well known examples are the ";gap junction',"; tight junction, the luminal membrane of the bladder epithelial cells and the outer membrane of Escherichia coli.


Author(s):  
Houguang Liu ◽  
Gang Cheng ◽  
Jianhua Yang ◽  
Zhihong Cheng ◽  
Zhushi Rao ◽  
...  

1978 ◽  
Vol 113 (1) ◽  
pp. 101-105 ◽  
Author(s):  
Elvira Nickel ◽  
Gertrud Oebel ◽  
Peter Pscheid

1965 ◽  
Vol 12 (6) ◽  
pp. 661-662
Author(s):  
J. Tonndorf
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document