Effect of Verapamil on Monocrotaline-Induced Pulmonary Artery Hypertension and Endothelial Cell Dysfunction in Rats

1990 ◽  
Vol 16 (6) ◽  
pp. 627-644 ◽  
Author(s):  
Rajamma Mathew ◽  
Dorothy E. Guzowski ◽  
Elizabeth S. Gloster
2021 ◽  
Author(s):  
Adam M. Andruska ◽  
Md Khadem Ali ◽  
Xuefei Tian ◽  
Edda Spiekerkoetter

AbstractProtein tyrosine kinases (PTKs) are essential for eukaryotic signaling. By targeting select PTKs, the group of drugs known as Tyrosine kinase inhibitors (TKIs) have proven to be effective for treating multiple diseases ranging from cancer to pulmonary fibrosis. However, some TKIs also paradoxically lead to the development of adverse conditions such as pulmonary arterial hypertension (PAH) by promoting endothelial cell dysfunction (ECD). We hypothesize that (1) subsets of PTKs may disproportionately modulate signaling pathways critical for endothelial homeostasis, such as BMPR2 signaling, and (2) inhibiting those pro-endothelial PTKs can promote the development of ECD. Herein we use an agnostic high-throughput siRNA screen to investigate how PTKs affect the canonical BMPR2 signaling pathway. Our major finding is that within the Src-family of non-receptor PTKs, the Src-B family promotes canonical BMPR2 signaling while the Src-A family suppresses it. We focus on two representative members of each family, Lck (for Src-B) and Fyn (for Src-A) that are the strongest activators or inhibitors of BMPR2 signaling in the screen. We confirm that Lck is expressed in the endothelium of pulmonary arteries and show that Lck knockout (termed si-Lck) in pulmonary artery endothelial cells (PAECs) suppresses canonical BMPR2 signaling while Fyn knockout (termed si-Fyn) promotes canonical BMPR2 signaling. Furthermore, Lck and Fyn are responsible for opposing functional behaviors in PAECs: si-Lck promotes apoptosis and interferes with tube formation while si-Fyn suppresses apoptosis and promotes tube formation. After analyzing the whole-transcriptome signature of si-Lck and si-Fyn PAECs we find that in addition to BMPR2 signaling suppression, si-Lck (and not si-Fyn) increases a broad number of ECD markers and increases canonical NF-κβ signaling. In summary, for the first time we show that Src-A and B Family of PTKs exert differential control over key endothelial cell signaling pathways resulting in direct phenotypic consequences. This knowledge may help to guide the design of more precise TKIs which avoid adverse drug reactions brought about through endothelial cell dysfunction.


2017 ◽  
Vol 232 (1) ◽  
pp. R27-R44 ◽  
Author(s):  
D S Boeldt ◽  
I M Bird

Maternal vascular adaptation to pregnancy is critically important to expand the capacity for blood flow through the uteroplacental unit to meet the needs of the developing fetus. Failure of the maternal vasculature to properly adapt can result in hypertensive disorders of pregnancy such as preeclampsia (PE). Herein, we review the endocrinology of maternal adaptation to pregnancy and contrast this with that of PE. Our focus is specifically on those hormones that directly influence endothelial cell function and dysfunction, as endothelial cell dysfunction is a hallmark of PE. A variety of growth factors and cytokines are present in normal vascular adaptation to pregnancy. However, they have also been shown to be circulating at abnormal levels in PE pregnancies. Many of these factors promote endothelial dysfunction when present at abnormal levels by acutely inhibiting key Ca2+ signaling events and chronically promoting the breakdown of endothelial cell–cell contacts. Increasingly, our understanding of how the contributions of the placenta, immune cells, and the endothelium itself promote the endocrine milieu of PE is becoming clearer. We then describe in detail how the complex endocrine environment of PE affects endothelial cell function, why this has contributed to the difficulty in fully understanding and treating this disorder, and how a focus on signaling convergence points of many hormones may be a more successful treatment strategy.


1995 ◽  
Vol 117 (2) ◽  
pp. 179-188 ◽  
Author(s):  
Michal Toborek ◽  
Steven W. Barger ◽  
Mark P. Mattson ◽  
Craig J. McClain ◽  
Bernhard Hennig

Sign in / Sign up

Export Citation Format

Share Document