Eosinophilic Lung Inflammation in Particulate-Induced Lung Injury. Technical Consideration in Isolating RNA for Gene Expression Studies

1996 ◽  
Vol 22 (5) ◽  
pp. 541-554 ◽  
Author(s):  
Urmila P. Kodavanti ◽  
Richard H. Jaskot ◽  
James Bonner ◽  
Annette Badgett ◽  
Kevin L. Dreher
2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Prue M. Pereira-Fantini ◽  
Anushi E. Rajapaksa ◽  
Regina Oakley ◽  
David G. Tingay

2010 ◽  
Vol 41 (2) ◽  
pp. 109-119 ◽  
Author(s):  
Neil R. Aggarwal ◽  
Franco R. D'Alessio ◽  
Kenji Tsushima ◽  
Venkataramana K. Sidhaye ◽  
Christopher Cheadle ◽  
...  

In animal models of acute lung injury (ALI), gene expression studies have focused on the acute phase of illness, with little emphasis on resolution. In this study, the acute phase of intratracheal lipopolysaccharide (IT LPS)-induced lung injury was similar in wild-type (WT) and recombinase-activating gene-1-deficient (Rag-1−/−) lymphocyte-deficient mice, but resolution was impaired and resolution-phase lung gene expression remained different from baseline only in Rag-1−/− mice. By focusing on groups of genes involved in similar biological processes (gene ontologies) pertinent to inflammation and the immune response, we identified 102 genes at days 4 and 10 after IT LPS with significantly different expression between WT and Rag-1−/− mice. After adoptive transfer of isolated CD4+CD25+Foxp3+ regulatory T cells (Tregs) to Rag-1−/− mice at the time of IT LPS, resolution was similar to that in WT mice. Of the 102 genes distinctly changed in either WT or Rag-1−/− mice from our 7 gene ontologies, 19 genes reverted from the Rag-1−/− to the WT pattern of expression after adoptive transfer of Tregs, implicating those 19 genes in Treg-mediated resolution of ALI.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kim Hoa Ho ◽  
Annarita Patrizi

AbstractChoroid plexus (ChP), a vascularized secretory epithelium located in all brain ventricles, plays critical roles in development, homeostasis and brain repair. Reverse transcription quantitative real-time PCR (RT-qPCR) is a popular and useful technique for measuring gene expression changes and also widely used in ChP studies. However, the reliability of RT-qPCR data is strongly dependent on the choice of reference genes, which are supposed to be stable across all samples. In this study, we validated the expression of 12 well established housekeeping genes in ChP in 2 independent experimental paradigms by using popular stability testing algorithms: BestKeeper, DeltaCq, geNorm and NormFinder. Rer1 and Rpl13a were identified as the most stable genes throughout mouse ChP development, while Hprt1 and Rpl27 were the most stable genes across conditions in a mouse sensory deprivation experiment. In addition, Rpl13a, Rpl27 and Tbp were mutually among the top five most stable genes in both experiments. Normalisation of Ttr and Otx2 expression levels using different housekeeping gene combinations demonstrated the profound effect of reference gene choice on target gene expression. Our study emphasized the importance of validating and selecting stable housekeeping genes under specific experimental conditions.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1272
Author(s):  
Judit Tajti ◽  
Magda Pál ◽  
Tibor Janda

Oat (Avena sativa L.) is a widely cultivated cereal with high nutritional value and it is grown mainly in temperate regions. The number of studies dealing with gene expression changes in oat continues to increase, and to obtain reliable RT-qPCR results it is essential to establish and use reference genes with the least possible influence caused by experimental conditions. However, no detailed study has been conducted on reference genes in different tissues of oat under diverse abiotic stress conditions. In our work, nine candidate reference genes (ACT, TUB, CYP, GAPD, UBC, EF1, TBP, ADPR, PGD) were chosen and analysed by four statistical methods (GeNorm, Normfinder, BestKeeper, RefFinder). Samples were taken from two tissues (leaves and roots) of 13-day-old oat plants exposed to five abiotic stresses (drought, salt, heavy metal, low and high temperatures). ADPR was the top-rated reference gene for all samples, while different genes proved to be the most stable depending on tissue type and treatment combinations. TUB and EF1 were most affected by the treatments in general. Validation of reference genes was carried out by PAL expression analysis, which further confirmed their reliability. These results can contribute to reliable gene expression studies for future research in cultivated oat.


Sign in / Sign up

Export Citation Format

Share Document