Reliability of sagittal plane hip, knee, and ankle joint angles from a single frame of video data using the GAITRite camera system

2014 ◽  
Vol 31 (1) ◽  
pp. 53-60 ◽  
Author(s):  
Sandy A. Ross ◽  
Clinton Rice ◽  
Kristyn Von Behren ◽  
April Meyer ◽  
Rachel Alexander ◽  
...  
Author(s):  
Raman Garimella ◽  
Koen Beyers ◽  
Thomas Peeters ◽  
Stijn Verwulgen ◽  
Seppe Sels ◽  
...  

Abstract Aerodynamic drag force can account for up to 90% of the opposing force experienced by a cyclist. Therefore, aerodynamic testing and efficiency is a priority in cycling. An inexpensive method to optimize performance is required. In this study, we evaluate a novel indoor setup as a tool for aerodynamic pose training. The setup consists of a bike, indoor home trainer, camera, and wearable inertial motion sensors. A camera calculates frontal area of the cyclist and the trainer varies resistance to the cyclist by using this as an input. To guide a cyclist to assume an optimal pose, joint angles of the body are an objective metric. To track joint angles, two methods were evaluated: optical (RGB camera for the two-dimensional angles in sagittal plane of 6 joints), and inertial sensors (wearable sensors for three-dimensional angles of 13 joints). One (1) male amateur cyclist was instructed to recreate certain static and dynamic poses on the bike. The inertial sensors provide excellent results (absolute error = 0.28°) for knee joint. Based on linear regression analysis, frontal area can be best predicted (correlation > 0.4) by chest anterior/posterior tilt, pelvis left/right rotation, neck flexion/extension, chest left/right rotation, and chest left/right lateral tilt (p < 0.01).


1998 ◽  
Vol 1 (1) ◽  
pp. 23-39
Author(s):  
Carter J. Kerk ◽  
Don B. Chaffin ◽  
W. Monroe Keyserling

The stability constraints of a two-dimensional static human force exertion capability model (2DHFEC) were evaluated with subjects of varying anthropometry and strength capabilities performing manual exertions. The biomechanical model comprehensively estimated human force exertion capability under sagittally symmetric static conditions using constraints from three classes: stability, joint muscle strength, and coefficient of friction. Experimental results showed the concept of stability must be considered with joint muscle strength capability and coefficient of friction in predicting hand force exertion capability. Information was gained concerning foot modeling parameters as they affect whole-body stability. Findings indicated that stability limits should be placed approximately 37 % the ankle joint center to the posterior-most point of the foot and 130 % the distance from the ankle joint center to the maximal medial protuberance (the ball of the foot). 2DHFEC provided improvements over existing models, especially where horizontal push/pull forces create balance concerns.


2019 ◽  
Vol 14 (5) ◽  
pp. 583-589 ◽  
Author(s):  
Jason D. Stone ◽  
Adam C. King ◽  
Shiho Goto ◽  
John D. Mata ◽  
Joseph Hannon ◽  
...  

Purpose: To provide a joint-level analysis of traditional (TS) and cluster (CS) set structure during the back-squat exercise. Methods: Eight men (24 [3] y, 177.3 [7.9] cm, 82.7 [11.0] kg, 11.9 [3.5] % body fat, and 150.3 [23.0] kg 1-repetition maximum [1RM]) performed the back-squat exercise (80%1RM) using TS (4 × 6, 2-min interset rest) and CS (4 × [2 × 3], 30-s intraset rest, 90-s interset rest), randomly. Lower-limb kinematics were collected by motion capture, as well as kinetic data by bilateral force platforms. Results: CS attenuated the loss in mean power (TS −21.6% [3.9%]; CS −12.4% [7.5%]; P = .042), although no differences in gross movement pattern (sagittal-plane joint angles) within and between conditions were observed (P ≥ .05). However, joint power produced at the hip increased from repetition (REP) 1 through REP 6 during TS, while a decrease was noted at the knee. A similar pattern was observed in the CS condition but was limited to the hip. Joint power produced at the hip increased from REP 1 through REP 3 but returned to REP 1 values before a similar increase through REP 6, resulting in differences between conditions (REP 4, P = .018; REP 5, P = .022). Conclusions: Sagittal-plane joint angles did not change in either condition, although CS elicited greater power. Differing joint power contributions (hip and knee) suggest potential central mechanism that may contribute to enhanced power output during CS and warrant further study. Practitioners should consider incorporating CS into training to promote greater power adaptations and to mitigate fatigue.


2019 ◽  
Author(s):  
Xingchen Li ◽  
Kai Rong ◽  
Yang Xu ◽  
Yuan Zhu ◽  
Xiangyang Xu

Abstract Background: It is challenging for the clinical management of malunited ankle fracture. The aim of this study is to evaluate the clinical outcome of realignment surgery for anterior translation of talus after malunited ankle fracture and to analyze its. Methods: A total of 11 patients with anterior translation of talus after malunited ankle fractures underwent corrective osteotomy in our institute were retrospectively reviewed. All patients were evaluated with radiological parameters and clinical functional scores. There were 4 patients with Weber type A fracture, 4 patients with Pilon type B fracture and 3 patients with Weber type C fracture. 8/11 patients had impaction on the anterior distal tibial plafond, intra-articular distal tibial osteotomy was performed in these patients, additional bony correction and soft tissue surgery were also performed to achieve congruent ankle joint. Results: The mean age at surgery was 32.8 ± 10.8 (range,16-48) years. The mean follow-up time was 50.5 ± 23.6 (range, 16-80) months. The mean AOFAS-AH score increased from 28.2 ± 19.1preoperatively to 72.5 ± 8.1 points postoperatively(p<0.05), the mean lateral talar station(LTS) improved from 9.2 ± 3.7 preoperatively to 1.5 ± 1.4 mm postoperatively(p<0.05). 10/11 patients had improvement or no worsening ankle osteoarthritis on sagittal plane, while 1 patient had advanced ankle osteoarthritis. Conclusion: A congruent ankle joint in sagittal plane could be achieved by corrective osteotomies with additional soft tissue procedures. The realignment surgery was a valuable treatment option for the salvage of anterior translation of talus after malunited ankle fracture.


2018 ◽  
Vol 12 (2) ◽  
pp. 167-171 ◽  
Author(s):  
Ichiro Tonogai ◽  
Fumio Hayashi ◽  
Yoshihiro Tsuruo ◽  
Koichi Sairyo

Background. This study characterized the anterior medial malleolar artery (AMMA) branching from the anterior tibial artery (ATA) to identify problems in anterior ankle arthroscopy possibly contributing to injury to the AMMA. Methods. Barium was injected into 12 adult cadaveric feet via the external iliac artery and the origin and branching direction of the AMMA were identified on computed tomography. Results. The AMMA originated from the level of the ankle joint and below and above the ankle joint line (AJL) in 4 (33.3%), 6 (50.0%), and 1 (8.3%) specimen, respectively. Mean distance from the AJL to the branching point of the AMMA on the sagittal plane was 2.5 mm distal to the AJL. Mean angle between the distal longitudinal axis of the ATA and AMMA was 83.2°. Conclusions. This study established the origin and branching of the AMMA from the ATA. The AMMA should be examined carefully during ankle arthroscopy. Levels of Evidence: Level IV: Cadaveric study


Author(s):  
Naveed Ahmed

This chapter introduces a system for acquiring synchronized multi-view color and depth (RGB-D) video data using multiple off-the-shelf Microsoft Kinect and methods for reconstructing temporally coherent 3D animation from the multi-view RGB-D video data. The acquisition system is very cost-effective and provides a complete software-based synchronization of the camera system. It is shown that the data acquired by this framework can be registered in a global coordinate system and then can be used to reconstruct the 360-degree 3D animation of a dynamic scene. In addition, a number of algorithms to reconstruct a temporally-coherent representation of a 3D animation without using any template model or a-prior assumption about the underlying surface are also presented. It is shown that despite some limitations imposed by the hardware for the synchronous acquisition of the data, a reasonably accurate reconstruction of the animated 3D geometry can be obtained that can be used in a number of applications.


2014 ◽  
Vol 26 (10) ◽  
pp. 102001
Author(s):  
李晋 Li Jin ◽  
杨志文 Yang Zhiwen ◽  
杨品 Yang Pin ◽  
杨正华 Yang Zhenghua ◽  
董建军 Dong Jianjun ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4539
Author(s):  
Igor Tak ◽  
Willem-Paul Wiertz ◽  
Maarten Barendrecht ◽  
Rob Langhout

Aim: Study concurrent validity of a new sensor-based 3D motion capture (MoCap) tool to register knee, hip and spine joint angles during the single leg squat. Design: Cross-sectional. Setting: University laboratory. Participants: Forty-four physically active (Tegner ≥ 5) subjects (age 22.8 (±3.3)) Main outcome measures: Sagittal and frontal plane trunk, hip and knee angles at peak knee flexion. The sensor-based system consisted of 4 active (triaxial accelerometric, gyroscopic and geomagnetic) sensors wirelessly connected with an iPad. A conventional passive tracking 3D MoCap (OptiTrack) system served as gold standard. Results: All sagittal plane measurement correlations observed were very strong for the knee and hip (r = 0.929–0.988, p < 0.001). For sagittal plane spine assessment, the correlations were moderate (r = 0.708–0.728, p < 0.001). Frontal plane measurement correlations were moderate in size for the hip (ρ = 0.646–0.818, p < 0.001) and spine (ρ = 0.613–0.827, p < 0.001). Conclusions: The 3-D MoCap tool has good to excellent criterion validity for sagittal and frontal plane angles occurring in the knee, hip and spine during the single leg squat. This allows bringing this type of easily accessible MoCap technology outside laboratory settings.


Sign in / Sign up

Export Citation Format

Share Document