Platelet Cytosolic free Calcium Before and After Antihypertensive Treatment in Perinephritis Hypertension of the Rabbit

Author(s):  
S. M. Barr ◽  
C. A. Hamilton ◽  
J. L. Reid
2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Helmut Schiffl ◽  
Susanne M. Lang

Primary hyperparathyroidism (PHPT) may be associated with arterial hypertension. The underlying mechanisms are not fully understood and reversibility by parathyroid surgery is controversial. This study aimed to characterize pressor hormones, vascular reactivity to norepinephrine, and cytosolic-free calcium in platelets in 15 hypertensive patients with hypercalcaemic PHPT before and after successful parathyroidectomy and to compare them with 5 pre-hypertensive patients with normocalcaemic PHPT, 8 normotensive patients with hypercalcaemic PHPT and 15 normal controls. Hypertensive patients with hypercalcaemic PHPT had slightly higher levels of pressor hormones (), enhanced cardiovascular reactivity to norepinephrine () and increased cytosolic calcium in platelets () than controls. Pre-hypertensive patients with normocalcaemic PHPT had intermediate values of increased cardiovascular reactivity and cytosolic calcium. Normotensive patients with hypercalcaemic PHPT and normotensive controls had comparable pressor hormone concentrations and intracellular calcium levels. Successful parathyroidectomy was associated with normal blood pressure values and normalisation of pressor hormone concentrations, cardiovascular pressor reactivity and cytosolic free calcium. Our results suggest that parathyroid hypertension is mediated/maintained, at least in part, by functional alterations of vascular smooth muscle cells and can be cured by parathyroidectomy in those patients who do not have primary hypertension.


1988 ◽  
Vol 263 (22) ◽  
pp. 10557-10560 ◽  
Author(s):  
M E Jaconi ◽  
R W Rivest ◽  
W Schlegel ◽  
C B Wollheim ◽  
D Pittet ◽  
...  

1987 ◽  
Vol 252 (4) ◽  
pp. C441-C449 ◽  
Author(s):  
L. A. Levy ◽  
E. Murphy ◽  
R. E. London

Fluorine 19 nuclear magnetic resonance (NMR) studies of intracellular fluorinated calcium chelators provide a useful strategy for the determination of cytosolic free calcium levels in cells and perfused organs. However, the fluorinated chelator with the highest affinity for calcium ions which has been described to date. 1,2-bis-(2-amino-5-fluorophenoxy)ethane-N,N,N',N'-tetraacetic acid (5FBAPTA), exhibits a dissociation constant (Kd) value 5- to 10-fold greater than the intracellular calcium concentration levels in most cell types, thus limiting the ability of fluorine NMR to report these concentrations reliably. We have consequently designed and synthesized several fluorinated calcium chelators with higher affinity for calcium. The best of these, 2-(2-amino-4-methyl-5-fluorophenoxy)-methyl-8 aminoquinidine-N,N,N',N'-tetraacetic acid (quinMF), has a Kd value approximately 10 times lower than that of 5FBAPTA. Several of the newly synthesized indicators have different chemical shifts for the calcium complexed and uncomplexed chelators to allow the simultaneous use of two indicators. In addition to providing information about the level of cytosolic free calcium, chelators containing a quinoline ring exhibit considerable sensitivity to magnesium levels and hence have potential application for the determination of cytosolic-magnesium concentrations. Application of these chelators is illustrated by determination of the cytosolic-free calcium level in erythrocytes. Use of quinMF, the chelator with the lowest Kd value, gives a calcium value of 25-30 nM.


1997 ◽  
Vol 272 (6) ◽  
pp. G1489-G1498 ◽  
Author(s):  
H. Klonowski-Stumpe ◽  
R. Schreiber ◽  
M. Grolik ◽  
H. U. Schulz ◽  
D. Haussinger ◽  
...  

The present study evaluates the effect of free radicals generated by xanthine oxidase-catalyzed oxidation of hypoxanthine on cellular function of isolated rat pancreatic acinar cells. The results show that a rapid and sustained increase in intracellular Ca2+ concentration ([Ca2+]i) preceded all other morphological and functional alterations investigated. Radical-induced [Ca2+]i increase was largely inhibited by 3,4,5-trimethoxybenzoic acid 8-(diethylamino)octyl ester, which prevents Ca2+ release from intracellular stores, but not by Ca2(+)-depleted medium. Radicals released Ca2+ from thapsigargin-insensitive, ryanodine-sensitive intracellular stores, whereas the secretagogue caerulein at physiological concentrations mainly released Ca2+ from thapsigargin-sensitive stores. In contrast to effects of the secretagogue, radical-induced Ca2+ changes did not cause luminal protein secretion but cell death. In single-cell measurements, both secretagogue and radicals induced oscillations of [Ca2+]i. Radical-induced oscillations had a lower frequency but similar amplitude when compared with caerulein-induced oscillations. 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid and ryanodine, which prevented the radical-induced Ca2+ increase without altering the generation of radicals, markedly reduced the radical-induced cell damage. These results suggest that the Ca2+ increase mediates the radical-induced cell injury. The studies also indicate that not only the extent and duration but also the origin of [Ca2+]i release as well as the frequency of Ca2+ oscillations may determine whether a pancreatic acinar cell will secrete or die.


Sign in / Sign up

Export Citation Format

Share Document