Hydrogen peroxide: A central player in physical plasma-induced oxidative stress in human blood cells

2014 ◽  
Vol 48 (5) ◽  
pp. 542-549 ◽  
Author(s):  
S. Bekeschus ◽  
J. Kolata ◽  
C. Winterbourn ◽  
A. Kramer ◽  
R. Turner ◽  
...  
2013 ◽  
Vol 34 (4) ◽  
pp. 373-379 ◽  
Author(s):  
Hasan Turkez ◽  
Mokhtar I. Yousef ◽  
Erdal Sönmez ◽  
Başak Togar ◽  
Feray Bakan ◽  
...  

2021 ◽  
Author(s):  
Shahbaz Ahmad ◽  
Neda Tufail ◽  
Nazia Parveen ◽  
Riaz Mahmood

Abstract Mercury (Hg) is a widespread environmental pollutant and toxicant which induces multiple organ damage in humans and animals. Hg toxicity is mediated by the induction of oxidative stress in target cells. We have used uric acid (UA), a potent antioxidant found in biological fluids, to protect human red blood cells (RBC) and lymphocytes against Hg-mediated cell, organelle and geno-toxicity. RBC were incubated with HgCl2, an Hg(II) compound, either alone or in presence of UA. Incubation of RBC with only HgCl2 increased production of nitrogen and oxygen radical species, enhanced methemoglobin levels, heme degradation, free ferrous iron, oxidation of proteins and membrane lipids and reduced antioxidant capacity of cells. Prior incubation of RBC with UA led to considerable UA concentration-dependent decline in formation of reactive oxygen and nitrogen species and also attenuated alterations in oxidative stress and biochemical parameters. UA enhanced the antioxidant capacity of RBC and restored metabolic, plasma membrane-bound and antioxidant enzyme activities. Scanning electron microscopy showed that UA prevented HgCl2-mediated morphological changes in RBC. HgCl2 dissipated the mitochondrial membrane potential and increased lysosomal membrane damage in lymphocytes, but UA pre-treatment attenuated these effects. Genotoxicity analysis by comet method showed that UA protected lymphocyte DNA from HgCl2-induced damage. Importantly, UA itself did not exhibit any deleterious effects in either RBC or lymphocytes. Thus, UA protects human blood cells from Hg(II)-mediated oxidative damage reducing the harmful effects of this extremely toxic metal. We suggest that UA performs a similar protective role in the plasma against heavy metal toxicity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. Gaikwad ◽  
P. R. Thangaraj ◽  
A. K. Sen

AbstractThe levels of hydrogen peroxide ($${\mathrm{H}}_{2}{\mathrm{O}}_{2}$$ H 2 O 2 ) in human blood is of great relevance as it has emerged as an important signalling molecule in a variety of disease states. Fast and reliable measurement of $${\mathrm{H}}_{2}{\mathrm{O}}_{2}$$ H 2 O 2 levels in the blood, however, continues to remain a challenge. Herein we report an automated method employing a microfluidic device for direct and rapid measurement of $${\mathrm{H}}_{2}{\mathrm{O}}_{2}$$ H 2 O 2 in human blood based on laser-induced fluorescence measurement. Our study delineates the critical factors that affect measurement accuracy—we found blood cells and soluble proteins significantly alter the native $${\mathrm{H}}_{2}{\mathrm{O}}_{2}$$ H 2 O 2 levels in the time interval between sample withdrawal and detection. We show that separation of blood cells and subsequent dilution of the plasma with a buffer at a ratio of 1:6 inhibits the above effect, leading to reliable measurements. We demonstrate rapid measurement of $${\mathrm{H}}_{2}{\mathrm{O}}_{2}$$ H 2 O 2 in plasma in the concentration range of 0–49 µM, offering a limit of detection of 0.05 µM, a sensitivity of 0.60 µM−1, and detection time of 15 min; the device is amenable to the real-time measurement of $${\mathrm{H}}_{2}{\mathrm{O}}_{2}$$ H 2 O 2 in the patient’s blood. Using the linear correlation obtained with known quantities of $${\mathrm{H}}_{2}{\mathrm{O}}_{2}$$ H 2 O 2 , the endogenous $${\mathrm{H}}_{2}{\mathrm{O}}_{2}$$ H 2 O 2 concentration in the blood of healthy individuals is found to be in the range of 0.8–6 µM. The availability of this device at the point of care will have relevance in understanding the role of $${\mathrm{H}}_{2}{\mathrm{O}}_{2}$$ H 2 O 2 in health and disease.


2008 ◽  
Vol 145-146 ◽  
pp. 29-36 ◽  
Author(s):  
Siyang Zheng ◽  
Mandheerej S. Nandra ◽  
Chi-Yuan Shih ◽  
Wei Li ◽  
Yu-Chong Tai

Sign in / Sign up

Export Citation Format

Share Document