2011 ◽  
Vol 8 (3) ◽  
pp. 254-260 ◽  
Author(s):  
Poulomi Sengupta ◽  
Sudipta Basu ◽  
Shiladitya Sengupta

2021 ◽  
Author(s):  
Megan Lo ◽  
Amnon Sharir ◽  
Michael D Paul ◽  
Hayarpi Torosyan ◽  
Christopher Agnew ◽  
...  

The Hedgehog (HH) pathway is critical for development and adult tissue homeostasis. Aberrant HH signaling can cause congenital malformations, such as digit anomalies and holoprosencephaly, and other diseases, including cancer. Signal transduction is initiated by HH ligand binding to the Patched 1 (PTCH1) receptor on primary cilia, thereby releasing inhibition of Smoothened (SMO), a HH pathway activator. Although cholesterol and several oxysterol lipids, which are enriched in the ciliary membrane, play a crucial role in HH activation, the molecular mechanisms governing the regulation of these lipid molecules remain unresolved. Here, we identify Canopy 4 (CNPY4), a Saposin-like protein, as a regulator of the HH pathway that controls membrane sterol lipid levels. Cnpy4—/— embryos exhibit multiple defects consistent with HH signaling perturbations, most notably changes in digit number. Knockdown of Cnpy4 hyperactivates the HH pathway at the level of SMO in vitro, and elevates membrane levels of accessible sterol lipids such as cholesterol, an endogenous ligand involved in SMO activation. Thus, our data demonstrate that CNPY4 is a negative regulator that fine-tunes the initial steps of HH signal transduction, revealing a previously undescribed facet of HH pathway regulation that operates through control of membrane composition.


Cancers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1153 ◽  
Author(s):  
Takuji Hayashi ◽  
Kazutoshi Fujita ◽  
Makoto Matsushita ◽  
Norio Nonomura

Prostate cancer is the most common type of cancer and the leading cause of cancer deaths among men in many countries. Preventing progression is a major concern for prostate cancer patients on active surveillance, patients with recurrence after radical therapies, and patients who acquired resistance to systemic therapies. Inflammation, which is induced by various factors such as infection, microbiome, obesity, and a high-fat diet, is the major etiology in the development of prostate cancer. Inflammatory cells play important roles in tumor progression. Various immune cells including tumor-associated neutrophils, tumor-infiltrating macrophages, myeloid-derived suppressor cells, and mast cells promote prostate cancer via various intercellular signaling. Further basic studies examining the relationship between the inflammatory process and prostate cancer progression are warranted. Interventions by medications and diets to control systemic and/or local inflammation might be effective therapies for prostate cancer progression. Epidemiological investigations and basic research using human immune cells or mouse models have revealed that non-steroidal anti-inflammatory drugs, metformin, statins, soy isoflavones, and other diets are potential interventions for preventing progression of prostate cancer by suppressing inflammation. It is essential to evaluate appropriate indications and doses of each drug and diet.


2005 ◽  
Vol 34 (1) ◽  
pp. 107-118 ◽  
Author(s):  
J Kim ◽  
L Jia ◽  
M R Stallcup ◽  
G A Coetzee

Androgen-independent prostate cancer is a lethal form of the disease that is marked by metastasis and rapid proliferation in its final stages. As no effective therapy for this aggressive tumor currently exists, it is imperative to elucidate and target the mechanisms involved in the progression to androgen independence. Accumulating evidence indicates that aberrant activation of androgen receptor (AR) via signal transduction pathways, AR gene mutation and/or amplification, and/or coregulator alterations may contribute to the progression of prostate cancer. In the present study, the effects of protein kinase A (PKA) signaling and its downstream factors on AR activity at the prostate-specific antigen (PSA) gene were tested. Activation of PKA by forskolin resulted in enhanced androgen-induced expression of the PSA gene, an effect that was blocked by the AR antagonist, bicalutamide. Interestingly, when either p300 or CBP was overexpressed, PKA activation was sufficient to stimulate PSA promoter-driven transcription in the absence of androgen, which was not inhibited by bicalutamide. PKA activation did not significantly alter AR protein levels but significantly increased the phosphorylated form of its downstream effector, cAMP responsive element-binding protein (CREB) in the presence of androgen. Furthermore, chromatin immunoprecipitation showed that the combination of androgen and forskolin increased phosphorylated CREB occupancy, which was accompanied by histone acetylation, at the putative cAMP responsive element located in the 5′ upstream regulatory region of the PSA gene. Remarkably, mammalian two-hybrid assay indicated that p300/CBP may bridge the interaction between AR and CREB, suggesting a novel enhanceosomal cooperation. These results demonstrate an intriguing interplay between a signal transduction pathway, coactivator overexpression and AR signaling as a possible combined mechanism of progression to androgen-independent prostate cancer.


Sign in / Sign up

Export Citation Format

Share Document