Lichens of the Oasis Molodyozhnyi and adjacent areas (Enderby Land, Antarctic)

2013 ◽  
Vol 47 ◽  
pp. 167-178 ◽  
Author(s):  
M. P. Andreev

Lichen flora and vegetation in the vicinity of the Russian base «Molodyozhnaya» (Enderby Land, Antarctica) were investigated in 2010–2011 in details for the first time. About 500 specimens were collected in 100 localities in all available ecotopes. The lichen flora is the richest in the region and numbers 39 species (21 genera, 11 families). The studied vegetation is very poor and sparse, but typical for coastal oases of the Antarctic continent. The poorness is caused by the extremely harsh climate conditions, insufficient availability of liquid water, ice-free land, and high insolation levels. The dominant and most common lichens are Rinodina olivaceobrunnea, Amandinea punctata, Candelariella flava, Physcia caesia, Caloplaca tominii, Lecanora expectans, Caloplaca ammiospila, Lecidea cancriformis, Pseudephebe minuscula, Lecidella siplei, Umbilicaria decussata, Buellia frigida, Lecanora fuscobrunnea, Usnea sphacelata, Lepraria and Buellia spp.

Author(s):  
Claudio Smiraglia

The Antarctic continent is certainly made an "awful" place by its harsh climate: in the past, explorers and researchers endured terrible hardships and the climate remains a challenge today, in spite of the many improvements in knowledge and technology. The Antarctic may be termed "the continent of the extremes", as it occupies an area unlike any other on earth. It is the farthest and most inaccessible and isolated continent; the most regular because of its rounded shape, with the South Pole at the centre; the coldest continent, with temperatures falling to -90°C; the driest (with an average of 130 mm of precipitation); the windiest, the highest, the most glacialized (it contains 91% of the volume of the earth’s ice). It also displays the most monotonous landscapes and presents the greatest contrast between marine and terrestrial ecosystems. But the Antarctic is also "extreme" because it is the least populated continent, with no indigenous population at all, while its few settlements (consisting in scientific bases) are concentrated on the coast; it is the only place that does not belong to one nation, but to all the world; it is the place where unique information on the past, present and future of humankind is revealed.


2012 ◽  
Vol 12 (12) ◽  
pp. 32741-32794 ◽  
Author(s):  
E.-M. Kyrö ◽  
V.-M. Kerminen ◽  
A. Virkkula ◽  
M. Dal Maso ◽  
J. Parshintsev ◽  
...  

Abstract. Over Antarctica, aerosol particles originate almost entirely from marine areas, with minor contribution from long-range transported dust or anthropogenic material. The Antarctic continent itself, unlike all other continental areas, has been thought to be practically free of aerosol sources. Here we present evidence of local aerosol production associated with melt-water ponds in the continental Antarctica. We show that in air masses passing such ponds, new aerosol particles are efficiently formed and these particles grow up to sizes where they may act as cloud condensation nuclei (CCN). The precursor vapours responsible for aerosol formation and growth originate very likely from highly abundant cyanobacteria Nostoc commune (Vaucher) communities of local ponds. This is the first time when freshwater vegetation has been identified as an aerosol precursor source. The influence of the new source on clouds and climate may increase in future Antarctica, and possibly elsewhere undergoing accelerating summer melting of semi-permanent snow cover.


2013 ◽  
Vol 13 (7) ◽  
pp. 3527-3546 ◽  
Author(s):  
E.-M. Kyrö ◽  
V.-M. Kerminen ◽  
A. Virkkula ◽  
M. Dal Maso ◽  
J. Parshintsev ◽  
...  

Abstract. Over Antarctica, aerosol particles originate almost entirely from marine areas, with minor contribution from long-range transported dust or anthropogenic material. The Antarctic continent itself, unlike all other continental areas, has been thought to be practically free of aerosol sources. Here we present evidence of local aerosol production associated with melt-water ponds in continental Antarctica. We show that in air masses passing such ponds, new aerosol particles are efficiently formed and these particles grow up to sizes where they may act as cloud condensation nuclei (CCN). The precursor vapours responsible for aerosol formation and growth originate very likely from highly abundant cyanobacteria Nostoc commune (Vaucher) communities of local ponds. This is the first time freshwater vegetation has been identified as an aerosol precursor source. The influence of the new source on clouds and climate may increase in future Antarctica, and possibly elsewhere undergoing accelerating summer melting of semi-permanent snow cover.


1998 ◽  
Vol 10 (4) ◽  
pp. 493-501
Author(s):  
G. O. L. Jones ◽  
L. Kersley ◽  
J. A. T. Heaton ◽  
L. Ciraolo ◽  
P. Spalla

Observations of satellite passes monitored at Halley and Terra Nova Bay have been combined to produce for the first time measurements of ionospheric electron content spanning the Antarctic continent. Results are presented from a sequence of four successive passes made during a period of some two hours that illustrate the development of the ionosphere over this wide spatial region. The observations are discussed in terms of the convective behaviour of the ionization, using results from the PACE radar and a standard model of the plasma flow.


Geology ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 91-95
Author(s):  
Perry Spector ◽  
Greg Balco

Abstract High-elevation rock surfaces in Antarctica have some of the oldest cosmogenic-nuclide exposure ages on Earth, dating back to the Miocene. A compilation of all available 3He, 10Be, and 21Ne exposure-age data from the Antarctic continent shows that exposure histories recorded by these surfaces extend back to, but not before, the mid-Miocene cooling at 14–15 Ma. At high elevation, this cooling entailed a transition between a climate in which liquid water and biota were present and could contribute to surface weathering and erosion, and a polar desert climate in which virtually all weathering and erosion processes had been shut off. This climate appears to have continued uninterrupted between the mid-Miocene and the present.


2001 ◽  
Vol 47 (157) ◽  
pp. 325-334 ◽  
Author(s):  
Jan-Gunnar Winther ◽  
Martin Nørman Jespersen ◽  
Glen E. Liston

AbstractWe have mapped Antarctic blue-ice areas using the U.S. National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) Antarctica cloud-free image mosaic established by the United States Geological Survey. The mosaic consists of 38 scenes acquired from 1980 to 1994. Our results show that approximately 60 000 km2 of blue ice exist for each of the two main types of blue ice: “melt-induced” and “wind-induced”. Normally, the former type is located on slopes in coastal areas where climate conditions (i.e. persistent winds and temperature), together with favourable surface orientation, sustain conditions for surface and near surface melt. The latter blue-ice category occurs near mountains or on outlet glaciers, often at higher elevations, where persistent winds erode snow away year-round, and combined with sublimation creates areas of net ablation. Furthermore, we have identified an additional area of 121 000 km2 as having potential for blue ice. However, in these areas features such as mixed pixels, glazed snow surfaces, crevasses and/or shadows make interpretation more uncertain. In conclusion, a conservative estimate of Antarctic blue-ice area coverage by this method is found to be 120 000 km2 (∼0.8% of the Antarctic continent), with a potential maximum of 241 000 km2 (∼1.6% of the Antarctic continent).


Mycologia ◽  
1977 ◽  
Vol 69 (3) ◽  
pp. 655
Author(s):  
Martha A. Sherwood ◽  
Carroll W. Dodge

2019 ◽  
Vol 53 (1) ◽  
pp. 107-142 ◽  
Author(s):  
D. E. Himelbrant ◽  
I. S. Stepanchikova ◽  
T. Ahti ◽  
V. Yu. Neshataeva

The first lichenological inventory in Koryakia has resulted in the list of 315 species reported from Parapolsky Dale, within and in vicinities of the Koryak State Reserve. Altogether 46 species are published from the Kamchatka Territory for the first time, including Lecanographa grumulosa new to Russia, East Asia and Beringia; Cercidospora trypetheliza, Lecania dubitans, Pertusaria borealis, Piccolia ochrophora, Protoparmelia cupreobadia, Rimularia badioatra and Strangospora moriformis new to Russian Far East; Abrothallus bertianus, Cladonia strepsilis, Physciella melanchra, Rimularia badioatra, Sclerococcum parasiticum, Sphinctrina leucopoda and Strangospora moriformis new to Beringia. The lichen diversity of the study area is relatively poor due to natural reasons. Comparison with neighboring regions (Kamchatka Peninsula, Chukotka, Magadan Region, Yakutia and Alaska) shows that the lichen flora of Parapolsky Dale contains almost no specific species. The majority of the species recorded here are also known from neighboring regions, especially Alaska and Kamchatka Peninsula.


2018 ◽  
Vol 52 (2) ◽  
pp. 397-406
Author(s):  
A. B. Ismailov ◽  
G. P. Urbanavichus

The lichens and lichenicolous fungi of high mountainous landscapes of Samurskiy Ridge were studied in altitudinal range 2400–3770 m a. s. l. for the first time and 112 species are recorded. Among them 33 species, 10 genera (Arthrorhaphis, Baeomyces, Calvitimela, Epilichen, Lambiella, Psorinia, Rufoplaca, Sagedia, Sporastatia, Tremolecia) and 4 families (Anamylopsoraceae, Arthrorhaphidaceae, Baeomycetaceae, Hymeneliaceae) are new for Dagestan, six species (Buellia uberior, Carbonea atronivea, Lecanora atrosulphurea, Lecidea fuliginosa, L. swartzioidea, Rhizoplaca subdiscrepans) are reported for the first time for the Greater Caucasus and two species (Acarospora subpruinata and Rhizocarpon postumum) — for the North Caucasus. Most of the new findings were collected from 3500–3770 m a. s. l.


Sign in / Sign up

Export Citation Format

Share Document