scholarly journals Study of the tsunami wave run-up using dimensional analysis

2021 ◽  
Vol 9 (2) ◽  
pp. 1-8
Author(s):  
Hiba A. Bachay ◽  
Asad H. Aldefae ◽  
Salah L. Zubaidi

Tsunamis are among the most severe natural hazards known to man, and they have claimed thousands of lives and destroyed vast amounts of property throughout history. Several previous researches studied the tsunami wave run-up and its inundation to the coasts and their effect on the coastal communities. In the current study, the Dimensional analysis (DA) method was used for formulating rational hypotheses for the complicated physical conditions connected to the wave run-up study. Pairs of empirical formulas were derived: the first one for the non-dimensional wave run-up over a sandy beach, and the other for the wave run-up over the armoured beach. Based on the obtained experimental results, which were adopted as an input data for the program of IBM SPSS Statistics, v26, both formulas showed a good agreement as the coefficients of correlation were 0.93 and 0.98, respectively.

2021 ◽  
pp. 103910
Author(s):  
Joaquin P. Moris ◽  
Andrew B. Kennedy ◽  
Joannes J. Westerink

Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 743
Author(s):  
Patrick Heneka ◽  
Markus Zinkhahn ◽  
Cornelia Schütz ◽  
Roman B. Weichert

High discharges at hydropower plants (HPP) may mask fishway attraction flows and, thereby, prevent fishes from locating and using fishways critical for their access to upstream spawning and rearing habitats. Existing methods for determining attraction flows are either based on simple guidelines (e.g., a proportion of HPP discharge) that cannot address the spatial and temporal complexity of tailrace flow patterns or complicated studies (e.g., combinations of detailed hydraulic and biological investigations) that are expensive and time-consuming. To bridge this gap, we present a new, intermediate approach to reliably determine attraction flows for technical fishways at small to medium-sized waterways (mean annual flow up to 400 m3/s). Fundamental to our approach is a design criterion that the attraction flow should maintain its integrity as it propagates downstream from the fishway entrance to beyond the highly turbulent zone characteristic of HPP tailraces to create a discernable migration corridor connecting the fishway entrance to the downstream river. To implement this criterion, we describe a set of equations to calculate the width of the entrance and the corresponding attraction discharge. Input data are usually easy to obtain and include geometrical and hydraulic parameters describing the target HPP and its tailrace. To confirm our approach, we compare model results to four sites at German waterways where the design of attraction flow was obtained by detailed experimental and numerical methods. The comparison shows good agreement supporting our approach as a useful, intermediate alternative for determining attraction flows that bridges the gap between simple guidelines and detailed hydraulic and biological investigations.


2002 ◽  
Vol 470 ◽  
pp. 319-357 ◽  
Author(s):  
ODD M. FALTINSEN ◽  
ALEXANDER N. TIMOKHA

The modal system describing nonlinear sloshing with inviscid flows in a rectangular rigid tank is revised to match both shallow fluid and secondary (internal) resonance asymptotics. The main goal is to examine nonlinear resonant waves for intermediate depth/breadth ratio 0.1 [lsim ] h/l [lsim ] 0.24 forced by surge/pitch excitation with frequency in the vicinity of the lowest natural frequency. The revised modal equations take full account of nonlinearities up to fourth-order polynomial terms in generalized coordinates and h/l and may be treated as a modal Boussinesq-type theory. The system is truncated with a high number of modes and shows good agreement with experimental data by Rognebakke (1998) for transient motions, where previous finite depth modal theories failed. However, difficulties may occur when experiments show significant energy dissipation associated with run-up at the walls and wave breaking. After reviewing published results on damping rates for lower and higher modes, the linear damping terms due to the linear laminar boundary layer near the tank's surface and viscosity in the fluid bulk are incorporated. This improves the simulation of transient motions. The steady-state response agrees well with experiments by Chester & Bones (1968) for shallow water, and Abramson et al. (1974), Olsen & Johnsen (1975) for intermediate fluid depths. When h/l [lsim ] 0.05, convergence problems associated with increasing the dimension of the modal system are reported.


2021 ◽  
Vol 9 (7) ◽  
pp. 784
Author(s):  
Arnida Lailatul Latifah ◽  
Durra Handri ◽  
Ayu Shabrina ◽  
Henokh Hariyanto ◽  
E. van Groesen

This paper shows simulations of high waves over different bathymetries to collect statistical information, particularly kurtosis and crest exceedance, that quantifies the occurrence of exceptionally extreme waves. This knowledge is especially pertinent for the design and operation of marine structures, safe ship trafficking, and mooring strategies for ships near the coast. Taking advantage of the flexibility to perform numerical simulations with HAWASSI software, with the aim of investigating the physical and statistical properties for these cases, this paper investigates the change in wave statistics related to changes in depth, breaking and differences between long- and short-crested waves. Three different types of bathymetry are considered: run-up to the coast with slope 1/20, waves over a shoal, and deep open-water waves. Simulations show good agreement in the examined cases compared with the available experimental data and simulations. Then predictive simulations for cases with a higher significant wave height illustrate the changes that may occur during storm events.


2018 ◽  
Vol 7 (3) ◽  
pp. 1233
Author(s):  
V Yuvaraj ◽  
S Rajasekaran ◽  
D Nagarajan

Cellular automata is the model applied in very complicated situations and complex problems. It involves the Introduction of voronoi diagram in tsunami wave propagation with the help of a fast-marching method to find the spread of the tsunami waves in the coastal regions. In this study we have modelled and predicted the tsunami wave propagation using the finite difference method. This analytical method gives the horizontal and vertical layers of the wave run up and enables the calculation of reaching time.  


Author(s):  
Juh-Whan Lee ◽  
Jennifer L. Irish ◽  
Robert Weiss

Since near-field-generated tsunamis can arrive within a few minutes to coastal communities and cause immense damage to life and property, tsunami forecasting systems should provide not only accurate but also rapid tsunami run-up estimates. For this reason, most of the tsunami forecasting systems rely on pre-computed databases, which can forecast tsunamis rapidly by selecting the most closely matched scenario from the databases. However, earthquakes not included in the database can occur, and the resulting error in the tsunami forecast may be large for these earthquakes. In this study, we present a new method that can forecast near-field tsunami run-up estimates for any combination of earthquake fault parameters on a real topography in near real-time, hereafter called the Tsunami Run-up Response Function (TRRF).Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/tw1D29dDxmY


2012 ◽  
Vol 1 (33) ◽  
pp. 18 ◽  
Author(s):  
Nils Goseberg ◽  
Torsten Schlurmann

This paper reports experimental results of long wave run-up climbing up a 1:40 sloping beach. The resulting maximum run-up is compared with analytical results and a good agreement is found for single sinusoidal waves with uniform wave period and varying amplitude. Subsequently, the interaction with macro-roughness elements on the beach is investigated for different long-shore obstruction ratios. The reduction in wave run-up is expressed by means of a nomogram relating the wave run-up without macro-roughness elements present to those cases where on-land flow is modified by macro-roughness. The presented results mainly focus on a non-staggered and non-rotated macro-roughness configuration. In addition to the run-up reduction, surface elevation profiles on the shore are presented, that address the shock wave generation when the wave tongue approaches the first row of macro-roughness elements.


2015 ◽  
Vol 9 (6) ◽  
pp. 6471-6493 ◽  
Author(s):  
M. P. Lüthi ◽  
A. Vieli

Abstract. Glacier calving can cause violent impulse waves which, upon landfall, can lead to destructive tsunami-like waves. Here we present data acquired during a calving event from Eqip Sermia, an ocean-terminating glacier in West Greenland. During an exceptionally well documented event, the collapse of 9 × 105 m3 ice from a 200 m high ice cliff caused an impulse wave of 50 m height, traveling at a speed of 25–30 m s-1. This wave was filmed from a tour boat in 800 m distance from the calving face, and simultaneously measured with a terrestrial radar interferometer and a tide gauge. Tsunami wave run-up height on the steep opposite shore in 4 km distance was 10–15 m, destroying infrastructure and eroding old vegetation. These observations indicate that such high tsunami waves are a recent phenomenon in the history of this glacier. Analysis of the data shows that only moderately bigger tsunami waves are to be expected in the future, even under rather extreme scenarios.


2021 ◽  
Author(s):  
De-Xing Zhu ◽  
Hong-Ming Liu ◽  
Yang-Yang Xu ◽  
You-Tian Zou ◽  
Xi-Jun Wu ◽  
...  

Abstract In the present work, considering the preformation probability of the emitted two protons in the parent nucleus, we extend the Coulomb and proximity potential model (CPPM) to systematically study two-proton (2p) radioactivity half-lives of the nuclei close to proton drip line, while the proximity potential is chosen as Prox.81 proposed by Blocki et al. in 1981. Furthermore, we apply this model to predict the half-lives of possible 2p radioactive candidates whose 2p radioactivity is energetically allowed or observed but not yet quantified in the evaluated nuclear properties table NUBASE2016. The predicted results are in good agreement with those from other theoretical models and empirical formulas, namely the effective liquid drop model (ELDM), generalized liquid drop model (GLDM), Gamow-like model, Sreeja formula and Liu formula.


2019 ◽  
Vol 174 ◽  
pp. 132-139 ◽  
Author(s):  
Erwin W.J. Bergsma ◽  
Chris E. Blenkinsopp ◽  
Kévin Martins ◽  
Rafael Almar ◽  
Luis P. Melo de Almeida
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document