scholarly journals Температурно-часовий підхід для оцінки довговічності відповідальних елементів конструкцій

Author(s):  
Р. П. Приходько

Поданий аналіз результатів екстраполяції діаграм тривалої міцності за модифікованим методом базових діаграм. Показана ефективність запропонованих алгоритмів прогнозування під час розрахунку тривалої міцності на довговічність два і більше порядки логарифмічної шкали часу. Уточнені області застосування відомих параметричних методів для прогнозування тривалої міцності матеріалів на основі експериментальних досліджень. Показано, що вони дають змогу екстраполювати час до руйнування до значень, які не більше, ніж в 10 разів перевищують наявні експериментальні дані з достатньою для технічних цілей точністю. Для розширення можливостей прогнозування до 300 тисяч годин і більше, виходячи з результатів випробувань обмеженої тривалості, запропонований модифікований метод базових діаграм. Запропонована лінійна залежність для апроксимації функції нев’язки на основі базових діаграм. У разі неможливості приведення діаграм тривалої міцності до «єдиної» кривої параметри функції нев’язки визначають із експериментальних даних для однієї ізотерми. В такому випадку її параметри є функціями від температури. Показані переваги такого підходу відповідно до параметричних співвідношень Ларсона-Міллера, Орра-Шербі-Дорна, Менсона-Саккопа, Труніна та інших за екстраполяції тривалої міцності на великі довговічності. An analysis of results of the extrapolation of stress rupture curves is performed using the modified base diagram method. The efficiency of the offered algorithms for predicting the creep rupture longevity with the prediction order equal to two or more on the logarithmic time scale is shown. The application areas of the known parametric methods for predicting the stress-rupture strength of materials are specified based on the experimental investigations. It is shown that these methods allow extrapolating the time destruction to the values that exceed the available experimental data by no more than a factor of 10 times with accuracy sufficient for engineering purposes. To extend the prediction capabilities to 300 thousand hours or more on the basis of the test results of limited duration, a modified base diagram method is offered. A linear dependence is offered to approximate the residual function in terms of the base diagram method. In the case where it is impossible to reduce the stress-rupture curves to a common curve, the residual function parameters are determined from the experimental data for one isotherm. In this case, its parameters are the functions of temperature. The advantages of this approach according to Larson-Miller, Orr-Sherby-Dorn, Manson-Succop, Trunin and other parameters are shown during the extrapolation of stress-rupture strength to big longevity.

Alloy Digest ◽  
1994 ◽  
Vol 43 (2) ◽  

Abstract THERMO-SPAN ALLOY is a precipitation-hardenable superalloy with a low coefficient of expansion combined with tensile and stress-rupture strength. Thermal fatigue resistance is inherent. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on forming and heat treating. Filing Code: FE-105. Producer or source: Carpenter.


1993 ◽  
Vol 322 ◽  
Author(s):  
H.M. Yun ◽  
R.H. Titran

AbstractThe tensile strain rate sensitivity and the stress-rupture strength of Mo-base and W-base alloy wires, 380 µm in diameter, were determined over the temperature range from 1200 to 1600 K. Three molybdenum alloy wires; Mo + 1.1 wt% hafnium carbide (MoHfC), Mo + 25 wt% W + 1.1 wt% hafnium carbide (MoHfC+25W) and Mo + 45 wt% W + 1.1 wt% hafnium carbide (MoHfC+45W), and a W + 0.4 wt% hafnium carbide (WHfC) tungsten alloy wire were evaluated.The tensile strength of all wires studied was found to have a positive strain rate sensitivity. The strain rate dependency increased with increasing temperature and is associated with grain broadening of the initial fibrous structures. The hafnium carbide dispersed W-base and Mo-base alloys have superior tensile and stress-rupture properties than those without HfC. On a density compensated basis the MoHfC wires exhibit superior tensile and stress-rupture strengths to the WHfC wires up to approximately 1400 K. Addition of tungsten in the Mo-alloy wires was found to increase the long-term stress-rupture strength at temperatures above 1400 K.


1987 ◽  
Vol 19 (8) ◽  
pp. 1085-1089
Author(s):  
P. A. Antikain ◽  
V. E. Borisov ◽  
I. V. Vasil'ev ◽  
V. F. Mishchenkov ◽  
D. S. Korulev

2015 ◽  
Vol 56 (4) ◽  
pp. 375-382 ◽  
Author(s):  
V. S. Bakunov ◽  
E. S. Lukin ◽  
É. P. Sysoev

1988 ◽  
Vol 30 (8) ◽  
pp. 627-630
Author(s):  
P. A. Antikain ◽  
L. I. Lepekhina ◽  
V. E. Borisov ◽  
T. N. Shevchenko ◽  
Yu. D. Mikulina

Sign in / Sign up

Export Citation Format

Share Document