scholarly journals Golden and Harmonic Mean in the Genetic Code

2017 ◽  
Author(s):  
Miloje M. Rakocevic

In previous two works [1], [2] we have shown the determination of genetic code by golden and harmonic mean within standard Genetic Code Table, i.e. nucleotide triplet table, whereas in this paper we show the same determination through a specific connection between two tables – of nucleotide doublets Table and triplets Table, over polarity of amino acids, measured by Cloister energy.

2017 ◽  
Author(s):  
Miloje M. Rakocevic

In previous two works (Rakočević, 1998; 2013), we have shown the determination of genetic code by golden and harmonic mean within standard Genetic Code Table, i.e. nucleotide triplet table, whereas in this paper we show the same determination through a specific connection between two tables – of nucleotide doublets Table and triplets Table, over polarity of amino acids, measured by Cloister energy in general, and by hydropathy and polar requirement, partialy. [This is the expanded version of the article published in Proceedings of the 2nd International Conference “Theoretical Approaches to BioInformation Systems” (TABIS.2013), September 17–22, 2013, Belgrade, Serbia. That first version is also stored, as Version 1, in OSF Preprints.]


2020 ◽  
Author(s):  
Kuba Nowak ◽  
Paweł Błażej ◽  
Małgorzata Wnetrzak ◽  
Dorota Mackiewicz ◽  
Paweł Mackiewicz

1AbstractReprogramming of the standard genetic code in order to include non-canonical amino acids (ncAAs) opens a new perspective in medicine, industry and biotechnology. There are several methods of engineering the code, which allow us for storing new genetic information in DNA sequences and transmitting it into the protein world. Here, we investigate the problem of optimal genetic code extension from theoretical perspective. We assume that the new coding system should encode both canonical and new ncAAs using 64 classical codons. What is more, the extended genetic code should be robust to point nucleotide mutation and minimize the possibility of reversion from new to old information. In order to do so, we follow graph theory to study the properties of optimal codon sets, which can encode 20 canonical amino acids and stop coding signal. Finally, we describe the set of vacant codons that could be assigned to new amino acids. Moreover, we discuss the optimal number of the newly incorporated ncAAs and also the optimal size of codon blocks that are assigned to ncAAs.


2021 ◽  
Vol 22 (17) ◽  
pp. 9106
Author(s):  
Nikola Štambuk ◽  
Paško Konjevoda ◽  
Josip Pavan

Antisense peptide technology (APT) is based on a useful heuristic algorithm for rational peptide design. It was deduced from empirical observations that peptides consisting of complementary (sense and antisense) amino acids interact with higher probability and affinity than the randomly selected ones. This phenomenon is closely related to the structure of the standard genetic code table, and at the same time, is unrelated to the direction of its codon sequence translation. The concept of complementary peptide interaction is discussed, and its possible applications to diagnostic tests and bioengineering research are summarized. Problems and difficulties that may arise using APT are discussed, and possible solutions are proposed. The methodology was tested on the example of SARS-CoV-2. It is shown that the CABS-dock server accurately predicts the binding of antisense peptides to the SARS-CoV-2 receptor binding domain without requiring predefinition of the binding site. It is concluded that the benefits of APT outweigh the costs of random peptide screening and could lead to considerable savings in time and resources, especially if combined with other computational and immunochemical methods.


Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 409
Author(s):  
Tamara L. Hendrickson ◽  
Whitney N. Wood ◽  
Udumbara M. Rathnayake

The twenty amino acids in the standard genetic code were fixed prior to the last universal common ancestor (LUCA). Factors that guided this selection included establishment of pathways for their metabolic synthesis and the concomitant fixation of substrate specificities in the emerging aminoacyl-tRNA synthetases (aaRSs). In this conceptual paper, we propose that the chemical reactivity of some amino acid side chains (e.g., lysine, cysteine, homocysteine, ornithine, homoserine, and selenocysteine) delayed or prohibited the emergence of the corresponding aaRSs and helped define the amino acids in the standard genetic code. We also consider the possibility that amino acid chemistry delayed the emergence of the glutaminyl- and asparaginyl-tRNA synthetases, neither of which are ubiquitous in extant organisms. We argue that fundamental chemical principles played critical roles in fixation of some aspects of the genetic code pre- and post-LUCA.


2017 ◽  
Author(s):  
Miloje M. Rakocevic

This book contains my works published in the period 2005-2013 on my website (also in arXiv). The concept of "harmony" in the title refers to the determination of the genetic code by golden mean, generalized golden mean and harmonic mean. Some parts of the contents, in the meantime are published in some of the official journals, but most are not, and this was the reason for my decision to publish all papers here in their entirety. [The work, which here is given as the third chapter, previously is published in the Proceedings of the Montenegrin Academy of Sciences, together with academician Zvonimir Damjanović.] The book's motto shows best in what is the difference between my insights (into the essence of the genetic code) in relation to the insights determined by the paradigm in the current science. [Now, 2017.12.09, I store this Proceedings of my works in OSF Preprints for the purpose of wider availability to the scientific public.]


2021 ◽  
Author(s):  
Evan Janzen ◽  
Yuning Shen ◽  
Ziwei Liu ◽  
Celia Blanco ◽  
Irene A. Chen

The emergence of the genetic code was a major transition in the evolution from a prebiotic RNA world to the earliest modern cells. A prominent feature of the standard genetic code is error minimization, or the tendency of mutations to be unusually conservative in preserving biophysical features of the amino acid. While error minimization is often assumed to result from natural selection, it has also been speculated that error minimization may be a by-product of emergence of the genetic code. During establishment of the genetic code in an RNA world, self-aminoacylating ribozymes would enforce the mapping of amino acids to anticodons. Here we show that expansion of the genetic code, through co-option of ribozymes for new substrates, could result in error minimization as an emergent property. Using self-aminoacylating ribozymes previously identified during an exhaustive search of sequence space, we measured the activity of thousands of candidate ribozymes on alternative substrates (activated analogs for tryptophan, phenylalanine, leucine, isoleucine, valine, and methionine). Related ribozymes exhibited preferences for biophysically similar substrates, indicating that co-option of existing ribozymes to adopt additional amino acids into the genetic code would itself lead to error minimization. Furthermore, ribozyme activity was positively correlated with specificity, indicating that selection for increased activity would also lead to increased specificity. These results demonstrate that by-products of the evolution and functional expansion of a ribozyme system could lead to adaptive properties of a genetic code. Such 'spandrels' could thus underlie significant prebiotic developments.


2021 ◽  
Author(s):  
Massimo Di Giulio ◽  
Franco Caldararo

We used the Moran's I index of global spatial autocorrelation with the aim of studying the distribution of the physicochemical or biological properties of amino acids within the genetic code table. First, using this index we are able to identify the amino acid property - among the 530 analyzed - that best correlates with the organization of the genetic code in the set of amino acid permutation codes. Considering, then, a model suggested by the coevolution theory of the genetic code origin - which in addition to the biosynthetic relationships between amino acids took into account also their physicochemical properties - we investigated the level of optimization achieved by these properties either on the entire genetic code table, or only on its columns or only on its rows. Specifically, we estimated the optimization achieved in the restricted set of amino acid permutation codes subject to the constraints derived from the biosynthetic classes of amino acids, in which we identify the most optimized amino acid property among all those present in the database. Unlike what has been claimed in the literature, it would appear that it was not the polarity of amino acids that structured the genetic code, but that it could have been their partition energy instead. In actual fact, it would seem to reach an optimization level of about 96% on the whole table of the genetic code and 98% on its columns. Given that this result has been obtained for amino acid permutation codes subject to biosynthetic constraints, that is to say, for a model of the genetic code consistent with the coevolution theory, we should consider the following conclusions reasonable. (i) The coevolution theory might be corroborated by these observations because the model used referred to the biosynthetic relationships between amino acids, which are suggested by this theory as having been fundamental in structuring the genetic code. (ii) The very high optimization on the columns of the genetic code would not only be compatible but would further corroborate the coevolution theory because this suggests that, as the genetic code was structured along its rows by the biosynthetic relationships of amino acids, on its columns strong selective pressure might have been put in place to minimize, for example, the deleterious effects of translation errors. (iii) The finding that partition energy could be the most optimized property of amino acids in the genetic code would in turn be consistent with one of the main predictions of the coevolution theory. In other words, since the partition energy is reflective of the protein structure and therefore of the enzymatic catalysis, the latter might really have been the main selective pressure that would have promoted the origin of the genetic code. Indeed, we observe that the beta-strands show an optimization percentage of 94.45%, so it is possible to hypothesize that they might have become the object of selection during the origin of the genetic code, conditioning the choice of biosynthetic relationships between amino acids. (iv) The finding that the polarity of amino acids is less optimized than their partition energy in the genetic code table might be interpreted against the physicochemical theories of the origin of the genetic code because these would suggest, for example, that a very high optimization of the polarity of amino acids in the code could be an expression of interactions between amino acids and codons or anticodons, which would have promoted their origin. This might now become less sustainable, given the very high optimization that is instead observed in favor of partition energy but not polarity. Finally, (v) the very high optimization of the partition energy of amino acids would seem to make a neutral origin of the ability of the genetic code to buffer, for example, the deleterious effects of translation errors very unlikely. Indeed, an optimization of about 100% would seem that it might not have been achieved by a simple neutral process, but this ability should probably have been generated instead by the intervention of natural selection. In actual fact, we show that the neutral hypothesis of the origin of error minimization has been falsified for the model analyzed here. Therefore, we will discuss our observations within the theories proposed to explain the origin of the organization of the genetic code, reaching the conclusion that the coevolution theory is the most strongly corroborated theory.


Life ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 773
Author(s):  
Ádám Radványi ◽  
Ádám Kun

The genetic code was evolved, to some extent, to minimize the effects of mutations. The effects of mutations depend on the amino acid repertoire, the structure of the genetic code and frequencies of amino acids in proteomes. The amino acid compositions of proteins and corresponding codon usages are still under selection, which allows us to ask what kind of environment the standard genetic code is adapted to. Using simple computational models and comprehensive datasets comprising genomic and environmental data from all three domains of Life, we estimate the expected severity of non-synonymous genomic mutations in proteins, measured by the change in amino acid physicochemical properties. We show that the fidelity in these physicochemical properties is expected to deteriorate with extremophilic codon usages, especially in thermophiles. These findings suggest that the genetic code performs better under non-extremophilic conditions, which not only explains the low substitution rates encountered in halophiles and thermophiles but the revealed relationship between the genetic code and habitat allows us to ponder on earlier phases in the history of Life.


Symmetry ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 388 ◽  
Author(s):  
Marco José ◽  
Gabriel Zamudio

It has long been claimed that the mitochondrial genetic code possesses more symmetries than the Standard Genetic Code (SGC). To test this claim, the symmetrical structure of the SGC is compared with noncanonical genetic codes. We analyzed the symmetries of the graphs of codons and their respective phenotypic graph representation spanned by the RNY (R purines, Y pyrimidines, and N any of them) code, two RNA Extended codes, the SGC, as well as three different mitochondrial genetic codes from yeast, invertebrates, and vertebrates. The symmetry groups of the SGC and their corresponding phenotypic graphs of amino acids expose the evolvability of the SGC. Indeed, the analyzed mitochondrial genetic codes are more symmetrical than the SGC.


Life ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 975
Author(s):  
Alexander Nesterov-Mueller ◽  
Roman Popov

Combinatorial fusion cascade was proposed as a transition stage between prebiotic chemistry and early forms of life. The combinatorial fusion cascade consists of three stages: eight initial complimentary pairs of amino acids, four protocodes, and the standard genetic code. The initial complimentary pairs and the protocodes are divided into dominant and recessive entities. The transitions between these stages obey the same combinatorial fusion rules for all amino acids. The combinatorial fusion cascade mathematically describes the codon assignments in the standard genetic code. It explains the availability of amino acids with the even and odd numbers of codons, the appearance of stop codons, inclusion of novel canonical amino acids, exceptional high numbers of codons for amino acids arginine, leucine, and serine, and the temporal order of amino acid inclusion into the genetic code. The temporal order of amino acids within the cascade is congruent with the consensus temporal order previously derived from the similarities between the available hypotheses. The control over the combinatorial fusion cascades would open the road for a novel technology to develop artificial microorganisms.


Sign in / Sign up

Export Citation Format

Share Document