scholarly journals Extreme Properties, variances and the behavior of the Universe

2021 ◽  
Author(s):  
K.H.K. Geerasee Wijesuriya

At this moment, scientists don’t have any significant explanation to explain ‘why there are much matter particles than anti-matter particles’ in the universe. But with this research, it is going to provide an explanation for that.An attempt of this research is to provide detailed innovative arguments regarding the real nature of supermassive black holes also. Here this is intending to explain why, the contribution to the accelerating expansion of the universe by the quantum vacuum is much bit than the contribution by other matters in the universe.Scientists have confused on why the energy of the zero-point energy (quantum vacuum) state, does not contribute to the cosmological vacuum energy (cosmological constant) much. The goal of this research is to investigate a solution to that particular problem also. This will explain why there is a difference between the observed energy of a satellite and the theoretically calculated energy of a satellite, which is orbiting around the Earth. This research will argue regarding whether dark matter is responsible for differences in observed and theoretical speed of stars revolving around the center of Galaxies.

2012 ◽  
Vol 07 ◽  
pp. 194-201
Author(s):  
NOBUYOSHI OHTA

We argue that the dark energy that explains the observed accelerating expansion of the universe may arise due to the contribution to the vacuum energy of the QCD ghost in a time-dependent background. We show that the QCD ghost produces dark energy proportional to the Hubble parameter [Formula: see text] (ΛQCD is the QCD mass scale) which has the right magnitude ~ (3 × 10-3 eV)4.


2015 ◽  
Vol 30 (22) ◽  
pp. 1540033 ◽  
Author(s):  
Steven D. Bass

The accelerating expansion of the Universe points to a small positive value for the cosmological constant or vacuum energy density. We discuss recent ideas that the cosmological constant plus Large Hadron Collider (LHC) results might hint at critical phenomena near the Planck scale.


2015 ◽  
Vol 12 (03) ◽  
pp. 1550037 ◽  
Author(s):  
Carlos Castro

A Clifford-gravity-based model is exploited to build a generalized action (beyond the current ones used in the literature) and arrive at relevant numerical results which are consistent with the presently-observed de Sitter accelerating expansion of the universe driven by a very small vacuum energy density ρ obs ~ 10-120(MP)4 (MP is the Planck mass) and provide promising dark energy/matter candidates in terms of the 16 scalars corresponding to the degrees of freedom associated with a Cl (3, 1)-algebra-valued scalar field Φ in four dimensions.


2005 ◽  
Vol 20 (19) ◽  
pp. 4628-4637 ◽  
Author(s):  
K. A. MILTON

Quantum vacuum energy entered hadronic physics through the zero-point energy parameter introduced into the bag model. Estimates of this parameter led to apparent discordance with phenomenological fits. More serious were divergences which were omitted in an ad hoc manner. New developments in understanding Casimir self-stresses, and the nature of surface divergences, promise to render the situation clearcut.


2011 ◽  
Vol 20 (14) ◽  
pp. 2739-2747 ◽  
Author(s):  
NARESH DADHICH

By following the general guiding principle that nothing should be prescribed or imposed on the universal entity, spacetime, we establish that it is the homogeneity (by which we mean homogeneity and isotropy of space and homogeneity of time) that requires not only a universally constant invariant velocity but also an invariant length given by its constant curvature, Λ and spacetime is completely free of dynamics. Thus c and Λ are the only two true constants of the spacetime structure and no other physical constant could claim this degree of fundamentalness. When matter is introduced, the spacetime becomes inhomogeneous and dynamic, and its curvature then determines by the Bianchi differential identity, the equation of motion for the Einstein gravity. The homogeneity thus demands that the natural state of free spacetime is of constant curvature and the cosmological constant thus emerges as a clear prediction which seems to be borne out by the observations of accelerating expansion of the Universe. However it has no relation to the vacuum energy and it could be envisioned that in terms of the Planck area, the Universe measures 10120 units!


2014 ◽  
Vol 29 (01) ◽  
pp. 1450007 ◽  
Author(s):  
B. RAYCHAUDHURI ◽  
F. RAHAMAN ◽  
M. KALAM

Einstein introduced cosmological constant in his field equations in an ad hoc manner. Cosmological constant plays the role of vacuum energy of the universe which is responsible for the accelerating expansion of the universe. To give a theoretical support, it remains an elusive goal to modern physicists. We provide a prescription to obtain cosmological constant from the phase transitions of the early universe when topological defects, namely monopole might have existed.


Sign in / Sign up

Export Citation Format

Share Document