scholarly journals Tempeature Redshift of Photons

2020 ◽  
Author(s):  
Xiaoping Hu

This article presents a new theory on redshift of light from celestial bodies. Lately it has been found that the Hubble constant calculated from different methods discord so much that calls arise for new physics to explain. Also, in addition to many unsolved puzzles like dark matter and source of expansion force, we shall show in this article that the current theory of redshift implies a few hidden, unreasonale assumptions. By assuming photon has temperature and its thermal energy is fully converted to wave energy, this article shows that photon can have a new redshift called Temperature Redshift, which not only is more significant for remote stars or galaxies, but also better fits the observational data, including those used in Hubble constant calculation. As such, if true, this new theory not only adds to our new understanding of photons, but may totally change our current understanding of the Universe, i.e., the Big Bang theory.

2020 ◽  
Vol 29 (14) ◽  
pp. 2043025
Author(s):  
Ram Gopal Vishwakarma

The recent measurements of the Hubble constant based on the standard [Formula: see text]CDM cosmology reveal an underlying disagreement between the early-Universe estimates and the late-time measurements. Moreover, as these measurements improve, the discrepancy not only persists but becomes even more significant and harder to ignore. The present situation places the standard cosmology in jeopardy and provides a tantalizing hint that the problem results from some new physics beyond the [Formula: see text]CDM model. It is shown that a nonconventional theory — the Milne model — which introduces a different evolution dynamics for the Universe, alleviates the Hubble tension significantly. Moreover, the model also averts some long-standing problems of the standard cosmology, for instance, the problems related with the cosmological constant, the horizon, the flatness, the Big Bang singularity, the age of the Universe and the nonconservation of energy.


1996 ◽  
Vol 168 ◽  
pp. 301-320
Author(s):  
Michael S. Turner

The hot big-bang cosmology provides a reliable accounting of the Universe from about 10−2sec after the bang until the present, as well as a robust framework for speculating back to times as early as 10−43sec. Cosmology faces a number of important challenges; foremost among them are determining the quantity and composition of matter in the Universe and developing a detailed and coherent picture of how structure (galaxies, clusters of galaxies, superclusters, voids, great walls, and so on) developed. At present there is a working hypothesis—cold dark matter—which is based upon inflation and which, if correct, would extend the big bang model back to 10−32sec and cast important light on the unification of the forces. Many experiments and observations, from CBR anisotropy experiments to Hubble Space Telescope observations to experiments at Fermilab and CERN, are now putting the cold dark matter theory to the test. At present it appears that the theory is viable only if the Hubble constant is smaller than current measurements indicate (around 30 km s−1Mpc−1), or if the theory is modified slightly, e.g., by the addition of a cosmological constant, a small admixture of hot dark matter (5 eV “worth of neutrinos”), more relativistic particles, or a tilted spectrum of density perturbations.


1999 ◽  
Vol 35 (1) ◽  
pp. 57-72 ◽  
Author(s):  
WILLIAM LANE CRAIG

John Taylor complains that the Kalam cosmological argument gives the appearance of being a swift and simple demonstration of the existence of a Creator of the universe, whereas in fact a convincing argument involving the premiss that the universe began to exist is very difficult to achieve. But Taylor's proffered defeaters of the premisses of the philosophical arguments for the beginning of the universe are themselves typically undercut due to Taylor's inadvertence to alternatives open to the defender of the Kalam arguments. With respect to empirical confirmation of the universe's beginning Taylor is forced into an anti-realist position on the Big Bang theory, but without sufficient warrant for singling out the theory as non-realistic. Therefore, despite the virtue of simplicity of form, the Kalam cosmological argument has not been defeated by Taylor's all too swift refutation.


2011 ◽  
Vol 20 (06) ◽  
pp. 1039-1051 ◽  
Author(s):  
NINFA RADICELLA ◽  
MAURO SERENO ◽  
ANGELO TARTAGLIA

The cosmic defect theory has been confronted with four observational constraints: primordial nuclear species abundances emerging from the big bang nucleosynthesis; large scale structure formation in the Universe; cosmic microwave background acoustic scale; luminosity distances of type Ia supernovae. The test has been based on a statistical analysis of the a posteriori probabilities for three parameters of the theory. The result has been quite satisfactory and such that the performance of the theory is not distinguishable from that of the ΛCDM theory. The use of the optimal values of the parameters for the calculation of the Hubble constant and the age of the Universe confirms the compatibility of the cosmic defect approach with observations.


Author(s):  
William Hasker

The doctrine of the creation of the universe by God is common to the monotheistic religions of Judaism, Christianity and Islam; reflection on creation has been most extensively developed within the Christian tradition. Creation is by a single supreme God, not a group of deities, and is an ‘absolute’ creation (creation ex nihilo, ‘out of nothing’) rather than being either a ‘making’ out of previously existing material or an ‘emanation’ (outflow) from God’s own nature. Creation, furthermore, is a free act on God’s part; he has no ‘need’ to create but has done so out of love and generosity. He not only created the universe ‘in the beginning’, but he sustains (‘conserves’) it by his power at each moment of its existence; without God’s support it would instantly collapse into nothingness. It is controversial whether the belief in divine creation receives support from contemporary cosmology, as seen in the ‘Big Bang’ theory.


Author(s):  
Matthew Y. Heimburger

The Big Bang theory is a scientific model of the universe that posits a state of dense, centralized matter before the current, observable expansion of the universe in one giant explosion. While ‘the Big Bang’ was a phrase first used somewhat facetiously by British astronomer Fred Hoyle in 1949, it rested on earlier theories and observations by George Lamaitre, Albert Einstein, and Edwin Hubble. The implications of Big Bang theory have been far-reaching. For some, the Big Bang’s suggestion of a ‘beginning of time’ lent itself to familiar religious teleology. For others, it provided a rigid, mechanistic model of the physical world, which in turn affected ideas in the social sciences and humanities. This is not to say that Big Bang theory was a ‘grand unifying theory’—even in the 1920s, the rather precise predictions of Einstein’s theories of relativity conflicted with the conclusions of Heisenberg’s Uncertainty Principle and quantum mechanics. Still, the idea that the physical world exists due to the violent expansion (and subsequent contraction) of matter suggests a rather small place for humanity in the larger scheme of things. There is little room or need for free will in such a system—at least when it comes to matters of large-scale significance. Today, the Big Bang often stands as a euphemism for debates over God and human determinism in the universe, and lends itself to philosophic traditions such as nihilism and existentialism.


2019 ◽  
Vol 28 (14) ◽  
pp. 1944024 ◽  
Author(s):  
Arthur E. Fischer

In this paper, we show how the [Formula: see text]CDM (Lambda Cold Dark Matter) Standard Model for cosmology can be extrapolated backwards through the big bang into the infinite past to yield an all-time model of the universe with scale factor given by [Formula: see text] defined and continuous for all [Formula: see text] and smooth ([Formula: see text] and satisfying Friedmann’s equation for all [Formula: see text]. At the big bang [Formula: see text], there is a nondifferentiable cusp singularity and our model shows some details of the behavior of the universe at this singularity. Our model is a zero-energy single-bounce model and an examination of the [Formula: see text]-plot of the [Formula: see text] level curve gives critical information about the initial and final states of the universe, about the evolution of the universe, and about the behavior of the universe at the big bang. Our results show that much can be said classically about the birth, big bang and death of the universe before one needs to reach for quantum gravitational effects.


1986 ◽  
Vol 7 ◽  
pp. 27-38 ◽  
Author(s):  
Vera C. Rubin

Thirty years ago, observational cosmology consisted of the search for two numbers: Ho, the rate of expansion of the universe at the position of the Galaxy; and qo, the deceleration parameter. Twenty years ago, the discovery of the relic radiation from the Big Bang produced another number, 3oK. But it is the past decade which has seen the enormous development in both observational and theoretical cosmology. The universe is known to be immeasurably richer and more varied than we had thought. There is growing acceptance of a universe in which most of the matter is not luminous. Nature has played a trick on astronomers, for we thought we were studying the universe. We now know that we were studying only the small fraction of it that is luminous. I suspect that this talk this evening is the first IAU Discourse devoted to something that astronomers cannot see at any wavelength: Dark Matter in the Universe.


Author(s):  
Helge Kragh

The presently accepted big-bang model of the universe emerged during the period 1930-1970, following a road that was anything but smooth. By 1950 the essential features of the big-bang theory were established by George Gamow and his collaborators, and yet the theory failed to win recognition. A major reason was that the big-bang picture of the evolving universe was challenged by the radically different picture of a steady-state universe favoured by Fred Hoyle and others. By the late 1950s there was no convincing reason to adopt one theory over the other. Out of the epic controversy between the two incompatible world models arose our modern view of the universe. Although the classical steady-state model was abandoned in the mid-1960s, attempts to modify it can be followed up to the present.


1990 ◽  
Vol 123 ◽  
pp. 459-484 ◽  
Author(s):  
James H. Williams

During an interview in September 1986, some three years prior to seeking political asylum with his wife at the U.S. Embassy in Beijing, Fang Lizhi was asked how he felt about the progress of political reform in China. Fang responded, “I must start with cosmology in answering this question.”Fang's linkage of politics with cosmology – a branch of astrophysics concerned with the origins of the universe – must seem peculiar to those who know him only as a human rights advocate and critic of the Chinese Communist Party. Yet this was no idiosyncrasy on Fang's part. Fang's life and published work from the early 1970s to the present leave no doubt that his emergence as the symbolic leader of China's democracy movement is deeply rooted in his experiences and outlook as a scientist.Fang's personal universe began to expand in 1972, when he and his colleagues at the University of Science and Technology of China (USTC) published a paper in Physica entitled “A Solution of the cosmological equations in scalar-tensor theory, with mass and blackbody radiation.” This innocuous-sounding article met with a furious response from leading theoretical circles of the Party. Fang et al. had broken a long-standing taboo by introducing the Big Bang theory to the Chinese physics world. Insofar as the Big Bang contradicted Engels's declaration that the universe must be infinite in space and time, Fang's paper was tantamount to heresy.


Sign in / Sign up

Export Citation Format

Share Document