scholarly journals The Law of Conservation of Time and Its Applications

2020 ◽  
Author(s):  
Ninh Khac Son

Time is a complex category not only in philosophy but also in mathematics and physics. In one thought about time, the author accidentally discovered a new way to explain and solve problems related to time dilation, such as solving the problem of Muon particle when moving from a height of 10 km to the earth’s surface, while the Muon’s lifespan is only 2.2 microseconds, or explaining Michelson-Morley experiment using the new method. In addition, the author also prove that the speed of light in vacuum is the maximum speed in the universe, and discovered the red shift effect while there is no increase in distance between objects. To do this, the author has built two axioms based on the discontinuity in the motion of the object and draw two consequences along with the law of conservation of time.

2015 ◽  
Vol 3 (1) ◽  
pp. 24
Author(s):  
Hasmukh K. Tank

<p>Accepting Einstein’s General Relativity Theory, that the changes in the gravitational field can propagate at the speed of light, it is proposed here that: before an electron in an atom emits a photon, the energy (<em>h f<sub>0</sub></em>) of the photon was a part of total energy of the atom; contributing to establish the gravitational-field around the atom. As soon as an electron in that atom emits a photon of energy <em>h f<sub>0</sub></em>, and the photon starts moving away from the atom, the gravitational-field around the atom partly reduces, proportional to the photon’s energy <em>h f<sub>0</sub></em>, and this wave of ‘reduced gravitational field’ propagates radially-outwards at the speed of light. And a part of energy of the photon gets spent in “filling” the ‘gravitational potential-well’ produced by its energy, when it was a part of energy of the atom. From the derivation presented here we find that the energy spent by the photon to “fill” the ‘gravitational potential-well’, during its inter-galactic journey manifests as the ‘cosmological red-shift’. And the so called ‘total-mass-of-the-universe'’ and ‘radius-of-the-universe'’ are just mathematically-equivalent mass and distance arising while converting electrostatic potential-energy into gravitational potential-energy. This is the reason why we find the large-number-coincidence (LNC). And since there is no expansion of the universe, there is no ‘cosmic coincidence’, that why only in this epoch we find the ‘large-number-coincidence’!</p>


2015 ◽  
Vol 3 (1) ◽  
pp. 40
Author(s):  
Hasmukh Tank

<p>Astronomical observations of the cosmological red-shift are currently interpreted in terms of ‘expansion of universe’ and ‘accelerated-expansion of the universe’, at the rate of <em>H<sub>0</sub> c</em>; here <em>H<sub>0</sub></em> is Hubble’s constant, and c is the speed of light. Whereas a straight-forward derivation presented here suggests that: rather it is the photon which is decelerating, at the rate of <em>H<sub>0</sub> c</em>. Such a deceleration of photons can be caused by virtual electrons, positrons and pi-mesons, contained in the extra galactic quantum vacuum, because: they do have gravitational-acceleration of the same order as <em>H<sub>0</sub> c</em> at their “surfaces”; or by decay of a photon into a lighter photon and a particle of mass <em>h H<sub>0</sub> / c<sup>2</sup></em>. Tired-light interpretations of the cosmological red-shift’ were so far considered as not compatible with the observations of ‘time-dilation of super-novae light-curves’; so in a paper titled: “Wave-theoretical insight into the relativistic ‘length-contraction’ and ‘time-dilation of super-novae light-curves’” (Tank, Hasmukh K. 2013), it has been already shown that any mechanism which can cause ‘cosmological red-shift’ will also cause ‘time-dilation of super-novae light-curves’.  Therefore, we now need not to remain confined to the Big-Bang model of cosmology.</p>


2019 ◽  
Vol 2 (4) ◽  

If all the stars outside our galaxy show the same red shift and pretend expansion of the universe, then it’s probably up to us. We know that the Milky Way is contracting. We expect a blue shift, which we cannot see. Instead of the blue shift, the stars of the Milky Way can be seen as fixed stars. The reason is that the distance is given in meters and decreases as much as the speed of light measured in meters per second. Although in our system a change in the speed of light is neither measurable nor observable, but it seems to be working.


Author(s):  
Ahmed Farag Ali

We study the localization of gravity through the matching point between non-inertial frames and local inertial frames. This localization of gravity lead to an emergence of a timeless state of the universe in a mathematically consistent way. We find a geometric interpretation of the speed of light and mass. The experimental evidence of the timeless state of the universe is the quantum entanglement and internal symmetries that are independent of time. Since the spin measurement is the manifestation of quantum entanglement measurement. Therefore, the spin of quantum particles is correlated with the relative gravitational red-shift at two different points. The same can be applied to all types of internal symmetries that are independent of time. Therefore gravity represents all measurements independent of time including quantum entanglement. We conclude that the gravity is the global $SU(3)\times SU(2)\times U(1)$ symmetry that produces gauge fields such as Electromagnetism, weak and strong nuclear force through localization with their internal symmetries correlated with the varying of relative gravitational red-shift . We also introduce a gravitational or geometric interpretation of spin-0, spin-1 and spin-1/2 states. We answered the question why do we measure matter and not anti-matter. We Introduce a solution for the Cosmological Constant Problem Value.


Author(s):  
Ahmed Farag Ali

In this paper, we investigate how Rindler observer measures the universe in the ADM formalism. We compute his measurements in each slice of the space-time in terms of gravitational red-shift which is a property of general covariance. In this way, we found special relativity preferred frames to match with the general relativity Rindler frame in ADM formalism. This may resolve the widely known incompatibility between special relativity and general relativity on how each theory sees the red-shift. We found a geometric interpretation of the speed of light and mass.


2018 ◽  
Vol 14 (1) ◽  
pp. 5296-5302
Author(s):  
Sydney Baldwin Self

The speed of light is an absolute, the measurement of the speed of light is not an absolute. According to Special Relativity, the rate at which a clock ticks is a function of the speed at which it is travelling through space; the faster the speed, the slower the rate. This is called time dilation. Time dilation is a function of the speed of an object through space. The faster an object is travelling the greater the time dilation. Because of time dilation, we are unable to measure the absolute speed of an object through space. We do not actually measure time. Instead we have instruments which measure the physical characteristics of instruments which are affected by time.  We then interpret these physical characteristics and this interpretation becomes our measurement of time. Our body is one of the instruments we use to measure time, but we also use various clocks. Time is not a characteristic of the universe; it is a construct which can be defined to have any value we choose. If we could establish a stationary point in space, it would be possible to: measure the absolute speed of light. measure the absolute speed through space of any moving object. establish a clock for absolute time. It might be theoretically possible to establish such a point, as follows: Assume a space station, located at a Lagrange point. Modify the speed of the space station through space for the x, y and z axes to maximize the speed of light. The location of the space station when the speed of light was maximized would be at a stationary point in space.


2020 ◽  
pp. 221-248
Author(s):  
I. V. Savelzon

The article defines the principal artistic conflict in S. Dovlatov’s works as an irreconcilable contradiction between the ugly truth of reality and the embellished lies of Soviet ideological appearances, imposing themselves as a substitute for that particular reality. However, a third element in this universe is a recurrent type of protagonist who remains consistent in all of Dovlatov’s works. His situation, fate and personality are defined by his sticking to ‘a third way.’ It is from this viewpoint alone that one can observe the workings of the law of absurdity that rules the universe. According to the author, the popularity of Dovlatov’s books lies in their mainstream protagonist. Devoid of individual traits, Dovlatov’s hero is easy for any reader to identify with psychologically; and not because of many similarities, but due to very few differences. All in all, the article attempts to describe S. Dovlatov’s artistic world as a system that represents an organic unity of the writer’s creative principles and his deeply dramatic worldview.


Author(s):  
David M. Wittman

Tis chapter explains the famous equation E = mc2 as part of a wider relationship between energy, mass, and momentum. We start by defning energy and momentum in the everyday sense. We then build on the stretching‐triangle picture of spacetime vectors developed in Chapter 11 to see how energy, mass, and momentum have a deep relationship that is not obvious at everyday low speeds. When momentum is zero (a mass is at rest) this energy‐momentum relation simplifes to E = mc2, which implies that mass at rest quietly stores tremendous amounts of energy. Te energymomentum relation also implies that traveling near the speed of light (e.g., to take advantage of time dilation for interstellar journeys) will require tremendous amounts of energy. Finally, we look at the simplifed form of the energy‐momentum relation when the mass is zero. Tis gives us insight into the behavior of massless particles such as the photon.


Author(s):  
Francesco Ciaccia ◽  
Ivan Romero ◽  
Rene Serral-Gracia ◽  
Mario Nemirovsky
Keyword(s):  

2004 ◽  
Vol 13 (07) ◽  
pp. 1345-1349 ◽  
Author(s):  
JOSÉ A. S. LIMA ◽  
LUCIO MARASSI

A generalization of the Press–Schechter (PS) formalism yielding the mass function of bound structures in the Universe is given. The extended formula is based on a power law distribution which encompasses the Gaussian PS formula as a special case. The new method keeps the original analytical simplicity of the PS approach and also solves naturally its main difficult (the missing factor 2) for a given value of the free parameter.


Sign in / Sign up

Export Citation Format

Share Document