scholarly journals Lampiran 5D paper Sulphate removal from wastewater in constructed wetland ecotechnology using pumice amended in the sand media

2021 ◽  
Author(s):  
Philiphi de Rozari

Sulphate is a part of sulphur compounds which potentially inhibit plant growth and microbial activities in receiving surface water. Thus, it is important to remove concentration of sulphate from wastewater to acceptable concentration before the water is released into aquatic system. Constructed wetlands (CWs) are good option of wastewater treatments due to their lowcost and eco technology. This research aimed to investigate the removal of sulphate from domestic wastewater using sand media amendment with pumice in CWs. In this experiment, six variations of CWs consisting sand and pumice planted with lemongrass (Cymbopogon citratus) were established. Domestic wastewater was loaded into CWs with loading rate 2 L/day. Sulphate concentrations were determined in inflows and outflows. The results showed that all treatment significantly remove sulphate concentrations from the inflow. The highest removal efficiency was in the media with 100% of pumice

2021 ◽  
Author(s):  
Philiphi de Rozari

The performance efficiency in constructed wetlands (CWs) technology is primarily affected by the media material and the types of plants used. Recently, investigations into the usage of local materials and plants in CWs has increased. Pumice is a material which is potential used as a media. However, research on amendment of pumice with other media in CWs is still limited. Therefore, this study aims to evaluate the potential of pumice amended with sand media and planted with lemongrass (Cymbopogon citratus) in CWs to remove organic matter, suspended solids, nutrients, and coliform. The adsorbents were characterized using X-ray diffraction, FTIR and XRF followed by adsorption experiments for PO4–P. Furthermore, Six vertical flow (VF) mesocosms with a diameter of 10.2cm and 55cm depth were established over six months. The treatments were based on percentage of sand media amended with pumice and planted with lemongrass. Furthermore, the barren media were applied to investigate the effect of lemongrass. The loading rate of domestic wastewater into the VF mesocosms was 2 L/day while inflows and outflows were determined for nutrients, organic matter, suspended solids and coliform. The adsorption of PO4–P followed the Langmuir model with adsorption capacity was 0.089 and 0.067 mol/g for pumice and sand, respectively. The results also showed that the removal efficiency of TSS, COD, NO3–N, NO2–N, PO4–P and total coliforms were in the range of 93.7–97.3 %, 52–83 %, 63–86 %, 51–74%, 81–88 % and 92–97 %, respectively. Based on the results, the highest removal efficiency was observed in the sand media amended with 50 % pumice and planted with lemongrass, while the lowest was found in the barren sand media.


2021 ◽  
Author(s):  
Philiphi de Rozari

Constructed wetlands are a promising solution technology to effectively treat domestic wastewater in developing countries at low cost. This paper reports the findings of the effectiveness of sand planted with Thypa latifolia with variation of the length of outflow measured from the bottom of the media in removing BOD5, COD, and suspended solids. The experimental design consisted of 12 vertical flow (VF) mesocosms. There were 3 treatments and one control based on the with variation of the length of outflow measured from the bottom of the media (7, 14, and 21 cm). During the five months, the mesocosms were loaded with syntethic wastewater. The influent had a 2-day hydraulic retention time. Samples were monitored for BOD5, COD and TSS. The results showed the concetration of BOD5, COD and TSS reduced significantly after the wastewater were treated with constructed wetland systems. The trend showed that the constructed wetland systems planted with Thypa latifolia had a better performance in comparison with the control. There were no significant differences of BOD5 COD, and suspended solid outflow among 7, 14 and 21 of constructed wetland systems. This indicated that the length of outflow measured from the bottom of the media did not influence the performance of constructed wetland systems in removing BOD5, COD and TSS


2016 ◽  
Vol 1 (2) ◽  
Author(s):  
Dadan Sudana Wijaya

Water pollution is mostly caused by direct disposal of waste to the ground or river without prior treatment. Several methods had been proposed to overcome the pollution, e.g. by treating the waste prior disposal or by applying artificial wetland systems (constructed wetlands) to treat domestic wastewater. Artificial wetland systems (constructed wetlands) resembles water treatment processes in natural wetlands, that utilizes hydrophytes to symbiose with the microorganisms in the media around the rhizosphere of the plants. A good example of the plant is Cyperus alternifolius, a plant that grows rapidly in wet environments. This plant has a triangular stem, with adult stem height ranged between 0.5-1.5 m. Organic materials contained in the wastewater will be cleaved by the microorganisms into simpler compounds and will be consumed by the plants as a nutrient, while the root system of aquatic plants will produce oxygen that can be used as a source of energy or catalyst for a series of metabolic processes for heterotropic aerobic microorganism. In general, horizontal flow SSF-Constructed Wetlands (hSSF-CW) is being used continuously and applied in many tropical countries. SSF-CW is a good choice for wastewater treatment due to its low maintenance costs and simple operational.


2021 ◽  
Vol 170 ◽  
pp. 106369
Author(s):  
Kemal Gunes ◽  
Fabio Masi ◽  
Selma Ayaz ◽  
Bilal Tuncsiper ◽  
Mehmet Besiktas

Water ◽  
2016 ◽  
Vol 8 (9) ◽  
pp. 365 ◽  
Author(s):  
Eleanor Butterworth ◽  
Andrew Richards ◽  
Mark Jones ◽  
Gabriella Mansi ◽  
Ezio Ranieri ◽  
...  

1999 ◽  
Vol 40 (3) ◽  
pp. 273-281 ◽  
Author(s):  
Trond Mæhlum ◽  
Per Stålnacke

This paper outlines the influence of temperature, flow rate and input concentrations on the treatment efficiency of organic matter and nutrients in constructed wetlands (CWs). Three integrated 10 PE systems with horizontal subsurface flow (HSF) treating domestic wastewater are described. Particular attention is devoted to: (1) aerobic pre-treatment in vertical-flow filters, (2) filter media with high phosphorus (P) sorption capacity, and (3) the treatment efficiency during winters. Aerobic pre-treatment followed by CW units including P sorption media removed most organic matter (BOD> 75%), P (> 90%) and total and ammonia N (40-80%). P retention was relatively stable in wetland filters, both with lightweight aggregates and ferruginous sand during 3-6 years of monitoring. Iron-rich sand from Bsh and Bs horizons of ferro-humic podzols was efficient for P sorption, but removal efficiencies of COD, TOC and SS were negative. The differences in efficiency between cold and warm periods were less than 10 percentage points for all parameters. It is anticipated that temperature effects are partially compensated by the large hydraulic retention time. The findings suggest that HSF systems do not require vegetation.


2004 ◽  
Vol 49 (5-6) ◽  
pp. 281-288 ◽  
Author(s):  
S.J. Kim ◽  
P.Y. Yang

A two-stage entrapped mixed microbial cell (2SEMMC) process which separates nitrification and denitrification phases by the installation of the anoxic and oxic EMMC reactors packed with EMMC carriers was operated with 6, 4, 3, and 2 hours of hydraulic retention time (HRT) using simulated domestic wastewater. The activated sludge was immobilized using cellulose acetate for the EMMC carriers. Similar soluble chemical oxygen demand (SCOD) removal efficiencies of 90-97% were observed for all HRTs (SCOD loading rate of 0.84-2.30 g/L/d) applied. In order to achieve more than 80 % of TN removal efficiency, the HRT should be maintained higher than 4 hours (less than 0.24 g/L/d of TN loading rate). Denitrification was a rate-limiting step which controlled overall TN removal efficiency at TN loading rate of 0.15-0.31 g/L/d although nitrification efficiencies achieved 97-99 %. The effluent TSS of less than 25 mg/L in the 2SEMMC process was maintained at the SCOD loading rate of less than 1.23 g/L/d with back-washing intervals of 5 and 10 days in the anoxic and oxic EMMC reactors, respectively. The minimum HRT of 4 hours is required for high removal efficiencies of organics (average 95.6 %) and nitrogen (average 80.5 %) in the 2SEMMC process with 3 times of recirculation ratio.


Sign in / Sign up

Export Citation Format

Share Document