scholarly journals Lampiran 3B Paper Penurunan Konsentrasi BOD5, COD dan Padatan Tersuspensi pada Air Limbah dengan Menggunakan Teknologi Lahan Basah Buatan (Constructed Wetland)

2021 ◽  
Author(s):  
Philiphi de Rozari

Constructed wetlands are a promising solution technology to effectively treat domestic wastewater in developing countries at low cost. This paper reports the findings of the effectiveness of sand planted with Thypa latifolia with variation of the length of outflow measured from the bottom of the media in removing BOD5, COD, and suspended solids. The experimental design consisted of 12 vertical flow (VF) mesocosms. There were 3 treatments and one control based on the with variation of the length of outflow measured from the bottom of the media (7, 14, and 21 cm). During the five months, the mesocosms were loaded with syntethic wastewater. The influent had a 2-day hydraulic retention time. Samples were monitored for BOD5, COD and TSS. The results showed the concetration of BOD5, COD and TSS reduced significantly after the wastewater were treated with constructed wetland systems. The trend showed that the constructed wetland systems planted with Thypa latifolia had a better performance in comparison with the control. There were no significant differences of BOD5 COD, and suspended solid outflow among 7, 14 and 21 of constructed wetland systems. This indicated that the length of outflow measured from the bottom of the media did not influence the performance of constructed wetland systems in removing BOD5, COD and TSS

2021 ◽  
Author(s):  
Philiphi de Rozari

Deterioration of water quality continues to be a major concern in West Timor. Establishment of wastewater treatment is crucial for eliminating this problem. Constructed wetland (CW) ecotechnologies are an alternative low-cost wastewater treatment to solve wastewater problems in West Timor. This research aimed to compare the effectiveness of Thypa latifolia in CWs for the removal of BOD5, suspended solids, NH4-N, and PO4-P. The experimental design consisted of 6 (20 L) vertical flow mesocosms, 3 mesocosms planted with Thypa latifolia and 3 mesocosms as a control. The mesocosms were irrigated with synthetic wastewater for 7 months. The inflow had a 2-day hydraulic retention time. The inflow and outflow samples were monitored for BOD5, suspended solids, NH4-N, and PO4-P. The trend showed that the CWs planted with Thypa latifolia reduced significantly the BOD, suspended solids, and NH4-N. However, the presence of plant did not significantly reduce PO4-P. This indicated that the CWs planted with Thypa latifolia had a better performance in comparison with pure sand media


2015 ◽  
Vol 71 (10) ◽  
pp. 1536-1544 ◽  
Author(s):  
P. de Rozari ◽  
M. Greenway ◽  
A. El Hanandeh

Constructed wetland ecotechnologies (CWEs) are a promising solution to effectively treat domestic wastewater in developing countries at low cost. This paper reports the findings of the effectiveness of sand media amended with woody biochar and two plants species (Melaleuca quinquenervia and Cymbopogon citratus) in removing biological oxygen demand (BOD5), suspended solids and coliforms. The experimental design consisted of 21 vertical flow (VF) mesocosms. There were seven media treatments using sand amended with varying proportions of biochar. During the first 8 months, the mesocosms were loaded with secondary clarified wastewater (SCW) then septage. The influent had a 4-day hydraulic retention time. Samples were monitored for BOD5, total suspended solids (TSS), total volatile solids (TVS), total coliforms and faecal coliforms. In the first 8 months, there were no significant performance differences between media treatments in the outflow concentrations of BOD5, TSS and TVS. The significant differences occurred during the last 3 months; using septage with biochar additions performed better than pure sand. For coliforms, the significant differences occurred after 6 months. In conclusion, the addition of biochar was not effective for SCW. The VF mesocosms system proved to be more effective in removing BOD5, TSS, TVS and coliforms when septage was loaded into the media.


2021 ◽  
Author(s):  
Philiphi de Rozari

The performance efficiency in constructed wetlands (CWs) technology is primarily affected by the media material and the types of plants used. Recently, investigations into the usage of local materials and plants in CWs has increased. Pumice is a material which is potential used as a media. However, research on amendment of pumice with other media in CWs is still limited. Therefore, this study aims to evaluate the potential of pumice amended with sand media and planted with lemongrass (Cymbopogon citratus) in CWs to remove organic matter, suspended solids, nutrients, and coliform. The adsorbents were characterized using X-ray diffraction, FTIR and XRF followed by adsorption experiments for PO4–P. Furthermore, Six vertical flow (VF) mesocosms with a diameter of 10.2cm and 55cm depth were established over six months. The treatments were based on percentage of sand media amended with pumice and planted with lemongrass. Furthermore, the barren media were applied to investigate the effect of lemongrass. The loading rate of domestic wastewater into the VF mesocosms was 2 L/day while inflows and outflows were determined for nutrients, organic matter, suspended solids and coliform. The adsorption of PO4–P followed the Langmuir model with adsorption capacity was 0.089 and 0.067 mol/g for pumice and sand, respectively. The results also showed that the removal efficiency of TSS, COD, NO3–N, NO2–N, PO4–P and total coliforms were in the range of 93.7–97.3 %, 52–83 %, 63–86 %, 51–74%, 81–88 % and 92–97 %, respectively. Based on the results, the highest removal efficiency was observed in the sand media amended with 50 % pumice and planted with lemongrass, while the lowest was found in the barren sand media.


2021 ◽  
Author(s):  
Philiphi de Rozari

Constructed wetland ecotechnologies (CWEs) are a promising solution to effectively treat domestic wastewater in developing countries at low cost. This paper reports the findings of the effectiveness of sand media amended with woody biochar and two plants species (Melaleuca quinquenervia and Cymbopogon citratus) in removing biological oxygen demand (BOD5), suspended solids and coliforms. The experimental design consisted of 21 vertical flow (VF) mesocosms. There were seven media treatments using sand amended with varying proportions of biochar. During the first 8 months, the mesocosms were loaded with secondary clarified wastewater (SCW) then septage. The influent had a 4-day hydraulic retention time. Samples were monitored for BOD5, total suspended solids (TSS), total volatile solids (TVS), total coliforms and faecal coliforms. In the first 8 months, there were no significant performance differences between media treatments in the outflow concentrations of BOD5, TSS and TVS. The significant differences occurred during the last 3 months; using septage with biochar additions performed better than pure sand. For coliforms, the significant differences occurred after 6 months. In conclusion, the addition of biochar was not effective for SCW. The VF mesocosms system proved to be more effective in removing BOD5, TSS, TVS and coliforms when septage was loaded into the media.


2018 ◽  
Vol 15 (3) ◽  
pp. 345-353 ◽  
Author(s):  
Jason Jie Xiang Bui ◽  
Yee Yong Tan ◽  
Fu Ee Tang ◽  
Carrie Ho

Purpose This study aims to investigate the hydraulic behaviour of a pilot-scale, two-staged, vertical flow constructed wetland (VFCW) for septage treatment, in terms of factors such as hydraulic retention time and hydraulic loading rate and its influence on the treatment dynamics. Because of intermittent feeding mode of VFCW systems and variation in its loading, its hydraulic behaviour is highly variable and need to be understood to optimize its treatment performance. Design/methodology/approach Tracer test were carried out using bromide ion with varying hydraulic loading rates (HLR) of 6.82 cm/d, 9.09 cm/d and 11.40 cm/d (i.e. equivalent to 75 L/d, 100L/d and 125 L/d). Tracer data is then analysed using the Residence Time Distribution (RTD) method. Findings RTD analysis showed that the increase in HLR increases the average hydraulic retention time (HRT). Subsequently, the increase in HLR results in a lower recovery of effluent, resulting in poor productivity in treatment. The study also showed that the removal of nitrogen and organic matter improved with increasing HRT. However, observations show no correlation between HRT and total solids removal. Originality/value A performance evaluation method (by tracer) is proposed to understand the hydraulics of flow in constructed wetlands, which has not been widely studied. Additionally, the dynamics of treatment in VFCWs treating septage may also be revealed by the tracer method. The study can be applied to any constructed wetlands designed for treatment of wastewater, septage or sludge.


2009 ◽  
Vol 60 (8) ◽  
pp. 2001-2007 ◽  
Author(s):  
P. L. Paulo ◽  
L. Begosso ◽  
N. Pansonato ◽  
Roshan R. Shrestha ◽  
M. A. Boncz

Design and configuration for wetlands treating greywater are usually based on literature data obtained from domestic wastewater operating wetlands. It is very important to determine proper criteria for design and configuration to provide efficiency and minimum maintenance, avoiding bad odour and clogging amongst others, ensuring the acceptance of householders. The aim of this work was to design a wetland system treating greywater for a household and determine whether the chosen criteria were appropriate. Some of the criteria taken into consideration for design and configuration were: quantitative and qualitative characteristics, desired removal of biochemical oxygen demand (BOD) and suspended solids (TSS), substrate and ornamental aspect of the system. The system was composed of a grease trap (kitchen), sedimentation tank, a horizontal flow constructed wetland (HF-CW), intermittent feeding system, and a vertical flow constructed wetland (VF-CW). The results showed that the suggested design and configuration were in accordance with the expected efficiency. Being a compact system, it was susceptible to peak flows, temporarily deteriorating the performance of the HF-CW. The hybrid system, however, showed to cope well with influent fluctuations. The overall performance of the system shows that the removal of turbidity, TSS, COD and BOD were over 88%, reaching 95% removal for both BOD and turbidity.


2000 ◽  
Vol 41 (1) ◽  
pp. 69-72 ◽  
Author(s):  
S.Ç. Ayaz ◽  
I. Akca

The constructed wetland is a low-cost technology to control environmental pollution. The system is especially suitable for small settlements. An innovative constructed wetland technology is described in this paper. A pilot plant was used to assess the performance of the system. The experimental system consists of two serial connected tanks that settled up with fillers and Cyperus as treatment media. Wastewater is recycled periodically upward and downward between the two tanks. The treatment performance was monitored in different loading conditions in a one-year period. The average COD removal efficiency of 90% was observed at 122 g COD/m2.day average loading conditions. Other average removal values in the same conditions are as follows: suspended solid 95%, TKN 77%, total nitrogen 61%, PO4-P 39%. The land requirement for this system will be 0.82 m2 per capita when applying as full-scale system.


2021 ◽  
Author(s):  
Vanitha Thammaiah ◽  
Manjunatha Hebbara ◽  
Manjunatha Mudukapla Virupakshappa

Abstract An experiment with different filterbeds and macrophytes was carried-out to study their phytoremediation capacity on the efficiency of domestic wastewater treatment through constructed wetland (CW) during November to March, 2017-18 at University of Agricultural Sciences, Dharwad campus, Karnataka, India. Twenty treatment combinations involving five types of filterbeds (FB-1: gravel, FB-2: gravel-sand-gravel, FB-3: gavel-sand-brick-gravel, FB-4: gravel-sand-charcoal-gravel and FB-5: gravel-sand-(charcoal+brick)-gravel) and four macrophytes (MP-1: Typha latifolia, MP-2: Brachiaria mutica, MP-3: Canna indica and MP-4: Phragmites sps.) were evaluated for treating domestic wastewater. After 120 days from start, across treatment combinations, water electrical conductivity (EC), total dissolved and suspended solids (TDS-TSS), biological oxygen demand (BOD), chemical oxygen demand (COD), sodium, sodium adsorption ratio (SAR), residual sodium carbonate (RSC), bicarbonates, total nitrogen-phosphorus-potassium (N-P-K) and boron (B) were reduced by more than 40 per cent due to wetland treatment. The system enhanced the mineralization of organic nitrogen to ammoniacal nitrogen (NH4+-N) and nitrate nitrogen (NO3-N) fractions. Among filterbeds, Type-5 caused higher reduction in pH, EC, BOD, COD and Organic-N while, Type-4 proved efficient in removing total solids and lowering pH in the sewage effluent. The Type-3 filterbed removed more suspended solids, potassium and ammoniacal nitrogen. Among the macrophytes, Brachiaria (paragrass) removed more nitrogen and potassium while, Phragmites removed more nitrogen, phosphorus and boron. The flexibility of implementation allows the CW to be adapted to different sites with different configurations, being suitable as main, secondary or tertiary treatment stage.


Author(s):  
Isabela Pires da Silva ◽  
Gabriela Barbosa da Costa ◽  
João Gabriel Thomaz Queluz ◽  
Marcelo Loureiro Garcia

   This study evaluated the effect of hydraulic retention time on chemical oxygen demand (COD) and total nitrogen (TN) removal in an intermittently aerated constructed wetlands. Two horizontal subsurface-flow constructed wetlands were used: one without aeration and the other aerated intermittently (1 hour with aeration/7 hours without aeration). Both systems were evaluated treating domestic wastewater produced synthetically. The flow rate into the two CWs was 8.6 L day-1 having a hydraulic retention time of 3 days. The results show that the intermittently aerated constructed wetland were highly efficient in removing COD (98.25%), TN (83.60%) and total phosphorus (78.10%), while the non-aerated constructed wetland showed lower efficiencies in the removal of COD (93.89%), TN (48.60%) and total phosphorus (58.66). These results indicate, therefore, that intermittent aeration allows the simultaneous occurrence of nitrification and denitrification processes, improving the removal of TN in horizontal subsurface-flow constructed wetlands. In addition, the use of intermittent aeration also improves the performance of constructed wetlands in removing COD and total phosphorus.


Sign in / Sign up

Export Citation Format

Share Document