scholarly journals Imbalance in the modern hydrologic budget of topographic catchments along the western slope of the Andes (21–25 S)

2018 ◽  
Author(s):  
David Boutt ◽  
Lilly Corenthal ◽  
Lee Ann Munk ◽  
Scott Hynek

Rates of water discharge often exceed groundwater recharge in arid catchments. This apparent mass imbalance within a catchment may be reconciled through either regional-scale groundwater flow between topographic drainages and/or the draining of stored groundwater recharged during pluvial periods. We investigate discrepancies in the modern hydrologic budget of catchments along the west flank of the Andes in northern Chile (21–25° S), focused on the endorheic Salar de Atacama basin, and adjacent basins. Our new, uncertainty bounded, estimates of modern recharge rates do not come close to balancing observed modern groundwater discharge within topographic catchments. Two geologically realistic conceptualizations of hydrogeologic catchments discharging to Salar de Atacama were explored with a 2D groundwater model. Results from models support the interpretation that both regional flow and transient drainage of groundwater from storage are required to balance water budgets along the plateau margin. The models further examine whether this system is still responding to climatic forcing from pluvial periods and highlight general characteristics for similar plateau margin systems including: (1) water level changes at the plateau margin are highly sensitive to changes in recharge on the plateau, (2) extent and magnitude of the changes in water table are controlled by the distribution of hydraulic conductivity at the margin, (3) contributing area to the lower elevation catchment is itself dynamic, and not coincident with the topographic boundary, and (4) difficulty in reconciling the modern position of “the water table” on the Andean plateau with the regional groundwater flow conceptualization and modern discharge to low lying catchments.

2020 ◽  
Vol 30 (1) ◽  
pp. 109
Author(s):  
Luhut Pardamean Siringoringo ◽  
Sandi Maulana

Way Huwi Village is located in South Lampung, near the Institut Teknologi Sumatera (ITERA). The purposes of this research is to know the unconfined groundwater flow pattern and groundwater facies changes. We measured the depth of water table at nine dig wells, analyzed piper diagram for groundwater facies identification. Then, we integrated groundwater flow patterns and groundwater facies from each well to analyze groundwater facies change pattern in research area. The result indicated that the unconfined groundwater flows from SW to NE of research area, following higher (SW) to lower elevation (NE). There are six patterns of unconfined groundwater facies changes: from Facies Na-Cl to Facies Na-HCO3-Cl, Facies Na-HCO3-Cl to Facies Ca-Mg-HCO3, Facies Na-HCO3-Cl to Facies Na-Cl, Facies Na-HCO3-Cl to Facies Na-SO4-Cl, Facies Ca-Mg-HCO3 to Facies Na-SO4-Cl, and Facies Ca-Mg-HCO3 to Facies Na-HCO3-Cl. ABSTRAK - Pola aliran airtanah tidak tertekan dan perubahan fasiesnya di Desa Way Huwi, Lampung Selatan. Desa Way Huwi terletak di Lampung Selatan, di dekat Institut Teknologi Sumatera (ITERA). Tujuan dari penelitian ini adalah untuk mengetahui perubahan pola aliran airtanah dan fasies airtanah yang terjadi. Kami mengukur kedalaman muka airtanah pada sembilan sumur gali, menganalisis Diagram Piper untuk mengetahui fasies airtanah. Kemudian kami mengintegrasikan pola aliran airtanah dan fasies airtanah setiap sumur untuk mengetahui pola perubahan fasies air tanah. Hasil analisa menunjukkan bahwa airtanah tidak tertekan mengalir dari Barat Daya ke Timur Laut mengikuti ketinggian yang lebih tinggi (SW) ke ketinggian yang lebih rendah (NE). Ada enam pola perubahan fasies airtanah tidak tertekan: dari Facies Na-Cl ke Facies Na-HCO3-Cl, Facies Na-HCO3-Cl ke Facies Ca-Mg-HCO3, Facies Na-HCO3-Cl ke Facies Na-Cl, Facies Na -HCO3-Cl ke Facies Na-SO4-Cl, Facies Ca-Mg-HCO3 ke Facies Na-SO4-Cl, dan Facies Ca-Mg-HCO3 ke Facies Na-HCO3-Cl


2021 ◽  
Author(s):  
Katalin Csondor ◽  
Lehel Csobaji ◽  
Brigitta Zentai-Czauner ◽  
Orsolya Győri ◽  
Anita Erőss

<p>In South Transdanubia (Hungary) there are remarkable geothermal and hydrocarbon resources. The area is also characterized by natural thermal water discharge at the boundary of outcropping carbonate hills and adjacent sedimentary basin. These regional discharge areas are favourable sites of hypogenic caves as well. These geofluid systems and groundwater related phenomena are usually investigated separately and their interactions are just neglected. The aim of this study is to give all these groundwater-related resources and phenomena a common framework applying the concept of regional hydraulic continuity, and to complete the basin-scale hydraulic assessment of the area based on preproduction archival measured data. Pressure-elevation profiles, tomographic fluid-potential maps and hydraulic cross-sections were constructed to determine the vertical and horizontal fluid-flow conditions. As a result, two kinds of fluid flow systems could be identified. Within the gravitational flow systems, horizontal flow conditions are dominant and the regional flow direction tends toward the S–SE. In deeper basin regions, an overpressured flow system is prevalent, where fluids are driven laterally from the deeper sub-basins towards their margins. Based on the regional-scale evaluation of fluid flow systems, conclusions could be drawn regarding the geothermal and hydrocarbon potential of the area. Additionally, local-scale phenomena could be explained, and the study emphasizes that knowledge on regional groundwater flow systems is essential to understand local scale groundwater-related phenomena such as recent cave formation in an area. A comparison with the marginal Buda Thermal Karst area allows for generalized conclusions regarding the connections between marginal karst reservoirs and the Pannonian Basin. Furthermore, the results of the study can be directly applied in the exploration and sustainable utilization of groundwater related resources, such as thermal waters and hydrocarbons.</p><p>This topic is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 810980. The National Research, Development and Innovation Fund has provided financial support to the research under the grant agreement no. PD 116227.</p>


2021 ◽  
Vol 80 (5) ◽  
Author(s):  
Stefan Scheidler ◽  
Peter Huggenberger ◽  
Horst Dresmann ◽  
Adrian Auckenthaler ◽  
Jannis Epting

AbstractIn regional scale aquifers in the Rhine Valley and Tabular Jura east of Basel (Switzerland), the groundwater circulation was investigated using regional-scale geological and hydraulic 3D models. The main aquifers in the area comprise the Quaternary aquifer of unconsolidated gravel deposits along the River Rhine and its tributaries, as well as the regional scale karst aquifer within the Upper Muschelkalk. Land subsidence, a process likely associated with salt solution mining, indicates further subordinate groundwater bearing segments and complex groundwater interactions along fault zones. In the aquifer systems we investigated, regional-scale groundwater circulation was simulated and visualized in relation to the geological settings. Lithostratigraphic units and fault structures were parameterized and analyzed, including the sensitivity of hydraulic properties and boundaries. Scenario calculations were used to investigate the sensitivity that the aquifer systems had to hydraulic parameter changes during Quaternary aggradation and degradation in the main valley. Those calculations were also done for base-level changes in the Rivers Rhine and Birs. For this purpose, this study considered probable historic base-levels before river regulation occurred, and before river dams and power plants were constructed. We also focused on scenarios considering increased groundwater recharge rates, e.g. due to exceptional long-lasting precipitation, or heavy rainfall events in the catchment area. Our results indicate that increased groundwater recharge rates in the catchment areas during such events (or periods) are associated with orders of magnitude increases of regional inflow into the Upper Muschelkalk karst aquifer. Furthermore, the groundwater fluctuations and groundwater saturated regions within the karst aquifer shift to places where high densities of sinkholes are documented. When the surface water base-levels adapt to probable historic levels, it leads to increased hydraulic gradients (i.e. local lowering of the groundwater level by up to 7 m). Those increased gradients are associated with increased groundwater flow within some aquifer regions that are particularly prone to karst development.


2006 ◽  
Vol 3 (3) ◽  
pp. 707-730 ◽  
Author(s):  
J. R. Campos-Gaytan ◽  
T. Kretzschmar

Abstract. A regional groundwater flow model was developed, in order to evaluate the water table behavior in the region of the Guadalupe Valley, in Baja California, Mexico. The State of Baja California has been subject to an increment of the agricultural, urban and industrials activities, implicating a growing water-demand. However, the State is characterized by its semi-arid climate with low surface water availability; resulting in an extensive use of groundwater in local aquifer. Based on historic piezometric information of the last two decades, however, a negative evolution could be observed, resulting a negative storage volume. So far, there is not an integral hydrogeological evaluation that determine the real condition of the groundwater resource, and that permit to planning a management of the Guadalupe Valley Aquifer. A steady-state calibration model was carried out in order to obtain the best possible match to measured levels at the Guadalupe Valley Aquifer. The contours of calculated water table elevations for January 1983 were reproduced. Generally, the comparison of the observed and calculated water table configurations have a good qualitative and quantitatively adjustment. Nowadays, it is count with a hydrogeological model that can be used for simulates the groundwater flow in the region of the Guadalupe Valley.


2021 ◽  
Vol 29 (3) ◽  
pp. 985-1007
Author(s):  
David F. Boutt ◽  
Lilly G. Corenthal ◽  
Brendan J. Moran ◽  
LeeAnn Munk ◽  
Scott A. Hynek

1985 ◽  
Vol 65 (2) ◽  
pp. 293-307 ◽  
Author(s):  
J. J. MILLER ◽  
D. F. ACTON ◽  
R. J. ST. ARNAUD

The results of this study indicate the importance of groundwater flow and water table depth on the genesis, characteristics and distribution of soils within a hummocky morainal landscape. Non-saline and non-carbonated soils in upland depressions can be attributed to "depression-focused" recharge by snowmelt and snowmelt runoff in the spring, as evidenced by deep sola and/or eluvial horizons. Non-saline and carbonated soils on lower slopes adjacent to depressions are associated with local discharge and/or lateral flow from the adjacent groundwater mounds under the depressions in spring, as well as upward flow in the summer resulting from water use by phreatophytes such as willows, creating a water table depression around the slough fringes. Saline and carbonated soils at low elevations are associated with shallow and rather stable water tables, and local discharge from surrounding uplands. Soil types on uplands are more dependent on slope position and infiltration than on depth to water table or groundwater flow. Non-saline soils of different profile types occur on mid- and upper slope positions. These areas have a deep water table with mainly recharge or lateral flow occurring in the saturated zone. The infiltration of surface runoff water in upland depressions is the dominant factor influencing the distribution of soluble salts in this hummocky landscape. Key words: Water table, landscape position, recharge, discharge, soluble salts, soil genesis, morphology, carbonate soil


2010 ◽  
Vol 7 (5) ◽  
pp. 7809-7838 ◽  
Author(s):  
M. Larocque ◽  
V. Fortin ◽  
M. C. Pharand ◽  
C. Rivard

Abstract. Groundwater contribution to river flows, generally called base flows, often accounts for a significant proportion of total flow rate, especially during the dry season. The objective of this work is to test simple approaches requiring limited data to understand groundwater contribution to river flows. The Noire river basin in southern Quebec is used as a case study. A lumped conceptual hydrological model (the MOHYSE model), a groundwater flow model (MODFLOW) and hydrograph separation are used to provide estimates of base flow for the study area. Results show that the methods are complementary. Hydrograph separation and the MOHYSE surface flow model provide similar annual estimates for the groundwater contribution to river flow, but monthly base flows can vary significantly between the two methods. Both methods have the advantage of being easily implemented. However, the distinction between aquifer contribution and shallow subsurface contribution to base flow can only be made with a groundwater flow model. The aquifer renewal rate estimated with the MODFLOW model for the Noire River is 30% of the recharge estimated from base flow values. This is a significantly difference which can be crucial for regional-scale water management.


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2459
Author(s):  
Alessia Kachadourian-Marras ◽  
Margarita M. Alconada-Magliano ◽  
José Joel Carrillo-Rivera ◽  
Edgar Mendoza ◽  
Felipe Herrerías-Azcue ◽  
...  

The dynamics of the underground part of the water cycle greatly influence the features and characteristics of the Earth’s surface. Using Tóth’s theory of groundwater flow systems, surface indicators in Mexico were analyzed to understand the systemic connection between groundwater and the geological framework, relief, soil, water bodies, vegetation, and climate. Recharge and discharge zones of regional groundwater flow systems were identified from evidence on the ground surface. A systematic hydrogeological analysis was made of regional surface indicators, published in official, freely accessible cartographic information at scales of 1:250,000 and 1:1,000,000. From this analysis, six maps of Mexico were generated, titled “Permanent water on the surface”, “Groundwater depth”, “Hydrogeological association of soils”, “Hydrogeological association of vegetation and land use”, “Hydrogeological association of topoforms”, and “Superficial evidence of the presence of groundwater flow systems”. Mexico’s hydrogeological features were produced. The results show that 30% of Mexico is considered to be discharge zones of groundwater flow systems (regional, intermediate, and recharge). Natural recharge processes occur naturally in 57% of the country. This work is the first holistic analysis of groundwater in Mexico carried out at a national–regional scale using only the official information available to the public. These results can be used as the basis for more detailed studies on groundwater and its interaction with the environment, as well as for the development of integrative planning tools to ensure the sustainability of ecosystems and satisfy human needs.


Sign in / Sign up

Export Citation Format

Share Document