scholarly journals Review of the high-power vacuum tube microwave sources based on Cherenkov radiation

2020 ◽  
Author(s):  
Weiye Xu

Since the first vacuum tube (X-ray tube) was invented by Wilhelm Röntgen in Germany, after more than one hundred years of development, the average power density of the vacuum tube microwave source has reached the order of 108 [MW][GHz]2. In the high-power microwave field, the vacuum devices are still the mainstream microwave sources for applications such as scientific instruments, communications, radars, magnetic confinement fusion heating, microwave weapons, etc. The principles of microwave generation by vacuum tube microwave sources include Cherenkov or Smith-Purcell radiation, transition radiation, and Bremsstrahlung. In this paper, the vacuum tube microwave sources based on Cherenkov radiation were reviewed. Among them, the multi-wave Cherenkov generators can produce 15 GW output power in X-band. Cherenkov radiation vacuum tubes that can achieve continuous-wave operation include Traveling Wave Tubes and Magnetrons, with output power up to 1MW. Cherenkov radiation vacuum tubes that can generate frequencies of the order of 100 GHz and above include Traveling Wave Tubes, Backward Wave Oscillators, Magnetrons, Surface Wave Oscillators, Orotrons, etc.

1994 ◽  
Vol 347 ◽  
Author(s):  
C. A. Everleigh ◽  
A. C. Johnson ◽  
R. J. Espinosa ◽  
R. S. Garard

ABSTRACTThis paper reports on the use of high-power traveling wave tubes (TWTs) as a source of microwave energy for materials processing applications. Recent work by Oak Ridge National Laboratories and Microwave Laboratories personnel has demonstrated the usefulness of sweeping the microwave processing frequency over substantial (>20%) bandwidths in order to achieve uniformity of heating over volumes unattainable using conventional microwave sources ∼ e.g., magnetrons. Properly constructed high-power TWTs are a logical choice of microwave source in such systems. After briefly reviewing the basic operating principles of the TWT, the required characteristics of a TWT for materials processing applications and how those requirements affect the TWT's design are discussed. Comments on the present product lines and areas of development for all of the major TWT manufacturers are also presented. Finally, the issue of the ultimate potential cost of TWTs designed for microwave processing applications is addressed.


Author(s):  
Nikita M. Ryskin ◽  
Gennadiy V. Torgashov ◽  
Roman A. Torgashov ◽  
Andrey G. Rozhnev ◽  
Vladimir N. Titov ◽  
...  

2021 ◽  
pp. 1-1
Author(s):  
Jianxun Wang ◽  
Yixin Wan ◽  
Xinjie Li ◽  
Qiang Liu ◽  
Hao Li ◽  
...  

Laser Physics ◽  
2021 ◽  
Vol 32 (2) ◽  
pp. 025801
Author(s):  
Xiangrui Liu ◽  
Zhuang Li ◽  
Chengkun Shi ◽  
Bo Xiao ◽  
Run Fang ◽  
...  

Abstract We demonstrated 22 W LD-pumped high-power continuous-wave (CW) deep red laser operations at 718.5 and 720.8 nm based on an a-cut Pr3+:YLF crystal. The output power of both polarized directions reached the watt-level without output power saturation. A single wavelength laser operated at 720.8 nm in the π-polarized direction was achieved, with a high output power of 4.5 W and high slope efficiency of approximately 41.5%. To the best of our knowledge, under LD-pumped conditions, the laser output power and slope efficiency are the highest at 721 nm. By using a compact optical glass plate as an intracavity etalon, we suppressed the π-polarized 720.8 nm laser emission. And σ-polarized single-wavelength laser emission at 718.5 nm was achieved, with a maximum output power of 1.45 W and a slope efficiency of approximately 17.8%. This is the first time that we have achieved the σ-polarized laser emission at 718.5 nm generated by Pr3+:YLF lasers.


1956 ◽  
Vol 44 (5) ◽  
pp. 649-659 ◽  
Author(s):  
M. Chodorow ◽  
E. Nalos

2013 ◽  
Vol 22 (10) ◽  
pp. 108401 ◽  
Author(s):  
Lu-Wei Liu ◽  
Yan-Yu Wei ◽  
Shao-Meng Wang ◽  
Yan Hou ◽  
Hai-Rong Yin ◽  
...  

1967 ◽  
Author(s):  
M.O. Bryant ◽  
L.D. Clough ◽  
F.E. Wray

Author(s):  
Chamssedine Berrached ◽  
Diane Bouw ◽  
Marc Camiade ◽  
Kassem El-Akhdar ◽  
Denis Barataud ◽  
...  

In this paper, the designs and experimental performances of wideband (higher than one octave) high-efficiency, high-power amplifiers (HPA) working in the 1–4 GHz range, using the same GaN process, are presented. They are based on the Bode–Fano integrals, which can be applied to a trade-off calculation between bandwidth and efficiency. Firstly, an microwave intregrated circuits (MIC) wideband HPA, externally matched, is presented. It generates a continuous wave (CW) output power (Pout) greater than 40 W, a power gain (GP) higher than 9.2 dB and a corresponding power added efficiency (PAE) (drain efficiency (DE)) ranged between 36 and 44% (40 and 48%) over the 1–3 GHz bandwidth. Two other amplifiers have been designed upon the same theoretical methodology, with a passive GaAs MMIC circuit technology, enabling to reduce the final size down to 420 mm2. The first internally matched Quasi monolithic microwave intergrated circuits (Quasi-MMIC) single-ended HPA generates a pulsed Pout greater than 25 W, GP higher than 9.8 dB, and a corresponding PAE (DE) ranged between 37 and 52.5% (40 and 55%) over the 2–4 GHz bandwidth. The second internally matched Quasi-MMIC HPA, based on balanced architecture, generates a pulsed Pout higher than 45 W, GP higher than 9.5 dB and PAE (DE) ranged between 33 and 44% (38 and 50%) over the 2–4 GHz bandwidth. These results are among the best ones published in terms of PAE and Pout in instantaneous octave bandwidth in the 1–4 GHz frequency range.


Sign in / Sign up

Export Citation Format

Share Document