Wideband, high-efficiency, high-power GaN amplifiers, using MIC and quasi-MMIC technologies, in the 1–4 GHz range

Author(s):  
Chamssedine Berrached ◽  
Diane Bouw ◽  
Marc Camiade ◽  
Kassem El-Akhdar ◽  
Denis Barataud ◽  
...  

In this paper, the designs and experimental performances of wideband (higher than one octave) high-efficiency, high-power amplifiers (HPA) working in the 1–4 GHz range, using the same GaN process, are presented. They are based on the Bode–Fano integrals, which can be applied to a trade-off calculation between bandwidth and efficiency. Firstly, an microwave intregrated circuits (MIC) wideband HPA, externally matched, is presented. It generates a continuous wave (CW) output power (Pout) greater than 40 W, a power gain (GP) higher than 9.2 dB and a corresponding power added efficiency (PAE) (drain efficiency (DE)) ranged between 36 and 44% (40 and 48%) over the 1–3 GHz bandwidth. Two other amplifiers have been designed upon the same theoretical methodology, with a passive GaAs MMIC circuit technology, enabling to reduce the final size down to 420 mm2. The first internally matched Quasi monolithic microwave intergrated circuits (Quasi-MMIC) single-ended HPA generates a pulsed Pout greater than 25 W, GP higher than 9.8 dB, and a corresponding PAE (DE) ranged between 37 and 52.5% (40 and 55%) over the 2–4 GHz bandwidth. The second internally matched Quasi-MMIC HPA, based on balanced architecture, generates a pulsed Pout higher than 45 W, GP higher than 9.5 dB and PAE (DE) ranged between 33 and 44% (38 and 50%) over the 2–4 GHz bandwidth. These results are among the best ones published in terms of PAE and Pout in instantaneous octave bandwidth in the 1–4 GHz frequency range.

2018 ◽  
Vol 10 (5-6) ◽  
pp. 737-743 ◽  
Author(s):  
Felix Rautschke ◽  
Stefan May ◽  
Sebastian Drews ◽  
Daniel Maassen ◽  
Georg Boeck

AbstractIn this contribution, a design methodology for octave-bandwidth power amplifiers (PA) for 5G communication systems using surface mount dual-flat-no-lead packaged gallium-nitride high-electron-mobility transistor devices is presented. Systematic source- and load-pull simulations have been used to find the optimum impedances across 75% fractional bandwidth for S- (1.9–4.2 GHz) and C-band (3.8–8.4 GHz) PAs. The harmonic impact is considered to improve the output power and efficiency of the PAs. Utilizing the characteristic behavior of the transistors leads to modified optimum fundamental load impedances for the low-frequency range, which have higher gain compared with high-frequency range, and minimize the influence of the higher harmonics. Continuous wave large-signal measurements of the realized S-Band PA show a power added efficiency (PAE) of more than 40% from 1.9–4.2 GHz and a flat power gain of 11 dB while achieving a saturated output power of 10 W. The measured performance of the C-Band PA demonstrates a delivered power between 3.5 and 5 W across the frequency range of 3.8–8.4 GHz. A flat power gain of around 9 ± 0.5 dB with 26–40% PAE is achieved.


Circuit World ◽  
2020 ◽  
Vol 46 (4) ◽  
pp. 243-248
Author(s):  
Min Liu ◽  
Panpan Xu ◽  
Jincan Zhang ◽  
Bo Liu ◽  
Liwen Zhang

Purpose Power amplifiers (PAs) play an important role in wireless communications because they dominate system performance. High-linearity broadband PAs are of great value for potential use in multi-band system implementation. The purpose of this paper is to present a cascode power amplifier architecture to achieve high power and high efficiency requirements for 4.2∼5.4 GHz applications. Design/methodology/approach A common emitter (CE) configuration with a stacked common base configuration of heterojunction bipolar transistor (HBT) is used to achieve high power. T-type matching network is used as input matching network. To increase the bandwidth, the output matching networks are implemented using the two L-networks. Findings By using the proposed method, the stacked PA demonstrates a maximum saturated output power of 26.2 dBm, a compact chip size of 1.17 × 0.59 mm2 and a maximum power-added efficiency of 46.3 per cent. The PA shows a wideband small signal gain with less than 3 dB variation over working frequency. The saturated output power of the proposed PA is higher than 25 dBm between 4.2 and 5.4 GHz. Originality/value The technology adopted for the design of the 4.2-to-5.4 GHz stacked PA is the 2-µm gallium arsenide HBT process. Based on the proposed method, a better power performance of 3 dB improvement can be achieved as compared with the conventional CE or common-source amplifier because of high output stacking impedance.


2020 ◽  
Vol 8 (5) ◽  
pp. 3021-3025

In this project, a 180 nm capacitive harmonic termination (CHT) CMOS-based power amplifier (PA) is designed for the Narrow-Band Internet of Things (NB-IoT) application. The PA's aimed operating frequency is between 1.9 GHz and 2.1 GHz. At schematic level simulation, the PA provides a power gain of 14 dB and a compressed output power of 24 dBm. With a resulting peak OIP3 of 33 dBm, the average power added efficiency (PAE) achieved is 40 %. The CMOS PA operates with a biasing gate voltage of 1.2 V under the voltage headroom of 3.3 V. The CHT CMOS PA provides good efficiency with negligible trade-off between linearity and output power.


Laser Physics ◽  
2021 ◽  
Vol 32 (2) ◽  
pp. 025801
Author(s):  
Xiangrui Liu ◽  
Zhuang Li ◽  
Chengkun Shi ◽  
Bo Xiao ◽  
Run Fang ◽  
...  

Abstract We demonstrated 22 W LD-pumped high-power continuous-wave (CW) deep red laser operations at 718.5 and 720.8 nm based on an a-cut Pr3+:YLF crystal. The output power of both polarized directions reached the watt-level without output power saturation. A single wavelength laser operated at 720.8 nm in the π-polarized direction was achieved, with a high output power of 4.5 W and high slope efficiency of approximately 41.5%. To the best of our knowledge, under LD-pumped conditions, the laser output power and slope efficiency are the highest at 721 nm. By using a compact optical glass plate as an intracavity etalon, we suppressed the π-polarized 720.8 nm laser emission. And σ-polarized single-wavelength laser emission at 718.5 nm was achieved, with a maximum output power of 1.45 W and a slope efficiency of approximately 17.8%. This is the first time that we have achieved the σ-polarized laser emission at 718.5 nm generated by Pr3+:YLF lasers.


2020 ◽  
Author(s):  
Weiye Xu

Since the first vacuum tube (X-ray tube) was invented by Wilhelm Röntgen in Germany, after more than one hundred years of development, the average power density of the vacuum tube microwave source has reached the order of 108 [MW][GHz]2. In the high-power microwave field, the vacuum devices are still the mainstream microwave sources for applications such as scientific instruments, communications, radars, magnetic confinement fusion heating, microwave weapons, etc. The principles of microwave generation by vacuum tube microwave sources include Cherenkov or Smith-Purcell radiation, transition radiation, and Bremsstrahlung. In this paper, the vacuum tube microwave sources based on Cherenkov radiation were reviewed. Among them, the multi-wave Cherenkov generators can produce 15 GW output power in X-band. Cherenkov radiation vacuum tubes that can achieve continuous-wave operation include Traveling Wave Tubes and Magnetrons, with output power up to 1MW. Cherenkov radiation vacuum tubes that can generate frequencies of the order of 100 GHz and above include Traveling Wave Tubes, Backward Wave Oscillators, Magnetrons, Surface Wave Oscillators, Orotrons, etc.


2021 ◽  
Vol 11 (19) ◽  
pp. 9017
Author(s):  
Jinho Jeong ◽  
Yeongmin Jang ◽  
Jongyoun Kim ◽  
Sosu Kim ◽  
Wansik Kim

In this paper, a high-power amplifier integrated circuit (IC) in gallium-nitride (GaN) on silicon (Si) technology is presented at a W-band (75–110 GHz). In order to mitigate the losses caused by relatively high loss tangent of Si substrate compared to silicon carbide (SiC), low-impedance microstrip lines (20–30 Ω) are adopted in the impedance matching networks. They allow for the impedance transformation between 50 Ω and very low impedances of the wide-gate transistors used for high power generation. Each stage is matched to produce enough power to drive the next stage. A Lange coupler is employed to combine two three-stage common source amplifiers, providing high output power and good input/output return loss. The designed power amplifier IC was fabricated in the commercially available 60 nm GaN-on-Si high electron mobility transistor (HEMT) foundry. From on-wafer probe measurements, it exhibits the output power higher than 26.5 dBm and power added efficiency (PAE) higher than 8.5% from 88 to 93 GHz with a large-signal gain > 10.5 dB. Peak output power is measured to be 28.9 dBm with a PAE of 13.3% and a gain of 9.9 dB at 90 GHz, which corresponds to the power density of 1.94 W/mm. To the best of the authors’ knowledge, this result belongs to the highest output power and power density among the reported power amplifier ICs in GaN-on-Si HEMT technologies operating at the W-band.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Premmilaah Gunasegaran ◽  
Jagadheswaran Rajendran ◽  
Selvakumar Mariappan ◽  
Yusman Mohd Yusof ◽  
Zulfiqar Ali Abdul Aziz ◽  
...  

Purpose The purpose of this paper is to introduce a new linearization technique known as the passive linearizer technique which does not affect the power added efficiency (PAE) while maintaining a power gain of more than 20 dB for complementary metal oxide semiconductor (CMOS) power amplifier (PA). Design/methodology/approach The linearization mechanism is executed with an aid of a passive linearizer implemented at the gate of the main amplifier to minimize the effect of Cgs capacitance through the generation of opposite phase response at the main amplifier. The inductor-less output matching network presents an almost lossless output matching network which contributes to high gain, PAE and output power. The linearity performance is improved without the penalty of power consumption, power gain and stability. Findings With this topology, the PA delivers more than 20 dB gain for the Bluetooth Low Energy (BLE) Band from 2.4 GHz to 2.5 GHz with a supply headroom of 1.8 V. At the center frequency of 2.45 GHz, the PA exhibits a gain of 23.3 dB with corresponding peak PAE of 40.11% at a maximum output power of 14.3 dBm. At a maximum linear output power of 12.7 dBm, a PAE of 37.3% has been achieved with a peak third order intermodulation product of 28.04 dBm with a power consumption of 50.58 mW. This corresponds to ACLR of – 20 dBc, thus qualifying the PA to operate for BLE operation. Practical implications The proposed technique is able to boost up the efficiency and output power, as well as linearize the PA closer to 1 dB compression point. This reduces the trade-off between linear output power and PAE in CMOS PA design. Originality/value The proposed CMOS PA can be integrated comfortably to a BLE transmitter, allowing it to reduce the transceiver’s overall power consumption.


2012 ◽  
Vol 263-266 ◽  
pp. 39-42 ◽  
Author(s):  
Zhi Qun Cheng ◽  
Li Wei Jin ◽  
Wen Shi

A broadband power amplifier module based on GaN HEMT operating Ku band is designed. TGF2023-02 Chip of GaN HEMT from TriQuint is modeled first. And then the module consists of two stages amplifiers. The first stage amplifier is single-stage amplifier and the second is two-way combiner amplifier. Wilkinson power divider, DC bias circuits and microstrip matching circuits are simulated and designed carefully. Simulation results showed that the amplifier module exhibits a power gain of 7 dB, power added efficiency of 13.9%, and an output power of 16 W under Vds=28 V, Vgs=-3.6 V, CW operating conditions at the frequency of 15 GHz.


1994 ◽  
Vol 347 ◽  
Author(s):  
M. S. Worthington ◽  
Guilford R. MacPhail

AbstractThe use of microwave energy for industrial processing applications has been ongoing since the early 1950's. A number of high power tubes were developed in the mid-1960's at 805, 915 and 2,450 MHz for industrial uses. One super power crossed-field amplifier (CFA), the QKS1262, was available in either 50 or 100 kW continuous wave (CW) format. This CFA was designed with a platinum emitter which was pulse started with 100 W average power. The CFA operates at ∼20 kV at 5 amps (50 kW - CW output) or 10 amps (100 kW - CW output/65% efficiency).This paper will describe the operating characteristics of the QKS1262 and the options in design to attain high power with high efficiency and long life (25,000 hours).


Author(s):  
Pierre Medrel ◽  
Audrey Martin ◽  
Tibault Reveyrand ◽  
Guillaume Neveux ◽  
Denis Barataud ◽  
...  

In the present paper, we present a dynamic gate biasing technique applied to a 10 W, S-band GaN amplifier. The proposed methodology addresses class-B operation of power amplifiers that offers the potential for high efficiency but requires a careful attention to maintain good linearity performances at large output power back-off. This work proposes a solution to improve the linearity of class-B amplifiers driven by radio frequency-modulated signals having large peak to average power ratios. An important aspect of this work concerns the characterization of the dynamic behavior of GaN devices for gate bias trajectory optimization. For that purpose, the experimental study reported here is based on the use of a time-domain envelope setup. A specific gate bias circuit has been designed and connected to a 10 W – 2.5 GHz GaN amplifier demo board from CREE. Compared to conventional class-B operation with a fixed gate bias, a 10-dB improvement in terms of third-order intermodulation is reached. When applied to the amplification of 16-QAM signals the proposed technique demonstrates significant ACPR reduction of order of 6 dB along with error vector magnitude (EVM) improvements of five points over 8 dB output power back-off with a minor impact on power-added efficiency performances.


Sign in / Sign up

Export Citation Format

Share Document