scholarly journals Opening a New Frontier in the Study of Neolithic Settlement Patterns of Eastern Thessaly, Greece

2021 ◽  
Author(s):  
Apostolos Sarris ◽  
Tuna Kalayci ◽  
François-Xavier Simon ◽  
Jamieson Donati ◽  
Meropi Manataki ◽  
...  

The Innovative Geophysical Approaches for the Study of Early Agricultural Villages of Neolithic Thessaly (ARISTEIA-IGEAN) Project made an extensive use of geospatial technologies in the study of the natural environment and social dynamics of Neolithic settlements within the coastal region of eastern Thessaly, Greece. The goal of the project was to offer a broad and non-destructive remote sensing coverage of a number of Neolithic settlements to study habitation practices that were developed in various ecological niches and to document site-specific cultural and environmental characteristics. The methods and techniques used in the IGEAN project included satellite remote sensing, Remotely Piloted Aircraft Systems (RPAS), ground-based geophysical surveys exploring new generation prospection instrumentation, and soil analyses. The manifold research agenda proved to be effective for the detailed mapping of soils in which archaeological residues of past occupation reside. The full open-access geospatial data is served online at http://igean.ims.forth.gr/. The IGEAN project exposed a large degree of variation in the occupation of the landscape and the usage of space in both small and large settlements. The study was able to capture an integrated image of the habitation settings and highlight the large degree of divergence in the intra-site settlement patterns of these agrarian societies. The synthesis of the results opens up further research questions regarding early agricultural villages of Neolithic Thessaly.

Author(s):  
Fernando Valcarce ◽  
Jesús Gonzalo ◽  
Joaquín Ramírez ◽  
Abel Calle Montes ◽  
Emilio Chuvieco

2021 ◽  
Vol 13 (4) ◽  
pp. 675
Author(s):  
Afonso Ferreira ◽  
Vanda Brotas ◽  
Carla Palma ◽  
Carlos Borges ◽  
Ana C. Brito

Phytoplankton bloom phenology studies are fundamental for the understanding of marine ecosystems. Mismatches between fish spawning and plankton peak biomass will become more frequent with climate change, highlighting the need for thorough phenology studies in coastal areas. This study was the first to assess phytoplankton bloom phenology in the Western Iberian Coast (WIC), a complex coastal region in SW Europe, using a multisensor long-term ocean color remote sensing dataset with daily resolution. Using surface chlorophyll a (chl-a) and biogeophysical datasets, five phenoregions (i.e., areas with coherent phenology patterns) were defined. Oceanic phytoplankton communities were seen to form long, low-biomass spring blooms, mainly influenced by atmospheric phenomena and water column conditions. Blooms in northern waters are more akin to the classical spring bloom, while blooms in southern waters typically initiate in late autumn and terminate in late spring. Coastal phytoplankton are characterized by short, high-biomass, highly heterogeneous blooms, as nutrients, sea surface height, and horizontal water transport are essential in shaping phenology. Wind-driven upwelling and riverine input were major factors influencing bloom phenology in the coastal areas. This work is expected to contribute to the management of the WIC and other upwelling systems, particularly under the threat of climate change.


Author(s):  
S. Schulte ◽  
F. Hillen ◽  
T. Prinz

Collecting vast amount of data does not solely help to fulfil information needs related to crowd monitoring, it is rather important to collect data that is suitable to meet specific information requirements. In order to address this issue, a prototype is developed to facilitate the combination of UAV-based RGB and thermal remote sensing datasets. In an experimental approach, image sensors were mounted on a remotely piloted aircraft and captured two video datasets over a crowd. A group of volunteers performed diverse movements that depict real world scenarios. The prototype is deriving the movement on the ground and is programmed in MATLAB. This novel detection approach using combined data is afterwards evaluated against detection algorithms that only use a single data source. Our tests show that the combination of RGB and thermal remote sensing data is beneficial for the field of crowd monitoring regarding the detection of crowd movement.


2013 ◽  
Vol 70 (11) ◽  
pp. 1641-1649 ◽  
Author(s):  
Eric R. Annis ◽  
Carl J. Wilson ◽  
Robert Russell ◽  
Philip O. Yund

We examined the potential for bottom temperatures ≤12 °C to inhibit successful recruitment of planktonic lobster postlarvae to the benthos. In laboratory trials, postlarvae held at 11 °C exhibited higher mortality, slower development, and reduced size increase at molt relative to postlarvae held at 13 °C. We sampled at field sites within Machias Bay, Maine (mean bottom temperature 12.39 °C, 46.1 degree-days ≥12 °C) and at the mouth of the bay (mean bottom temperature 11.57 °C, 5.1 degree-days ≥12 °C), where temperature was influenced by the cold Eastern Maine Coastal Current (EMCC). We found significantly higher settlement at the warm inshore site but, the abundance of competent planktonic postlarvae was not significantly different between sites, indicating a disconnect between postlarval abundance and settlement. Regional sampling of newly settled lobsters revealed a pattern of higher settlement at inshore sites extending across a broader coastal region impacted by the EMCC. Our results suggest that small differences in water temperature may shape settlement patterns through either behavioral avoidance of colder settlement sites or elevated postsettlement mortality of postlarvae settling at colder sites.


Author(s):  
KHUSHBOO KUMARI ◽  
ASMITA A. DEO

The effect of four different cyclones making land fall on four different coastal regions is studied viz., Nisha (2008, Tamil Nadu), Laila (2010, Andhra Pradesh), Sidr (2007, Bangladesh) and land depression BOB 03 (2008, Orissa). Remote sensing and Geographic Information System (GIS) technique are used to detect change in Land use and Land cover (LU/LC). Change in vegetation cover by Normalized Vegetation Index (NDVI) is also investigated. Further, preparation of slope map, processing of buffer zoning map is exercised. These parameters are analyzed to find the impression of cyclones after hitting the coastal boundaries by considering the images before and after the cyclone has passed. Change detection assessment of LU/LC features provides information for monitoring the trend of change in an area. In almost every considered region, it is found that dense vegetation is changed to sparse vegetation. Also, decrease in the irrigated cropland due to heavy rainfall caused by cyclone is noted. Risk zone is created by buffer ring of cyclone track to spot the area under risk zone. The area calculation suggests the effect of cyclone at the distance of 20–50[Formula: see text]km from the cyclone path which is validated from the slope effect on LU/LC, also. Some of the common features such as dense vegetation, show decrease in the area by 71%, 17%, 67% and 60%, or settlement area also shows decrease by 38%, 15%, 57% and 17% due to Laila, BOB 03, Nisha and Sidr cyclones, respectively. Increase in shrubland mix with rangeland by 18%, 113% and 98% is also seen due to Laila, Nisha and Sidr cyclones. Other LU/LC shows changes such as, water bodies increasing by 6%, 189% due to BOB 03 and Nisha cyclones. Changes are also seen in sparsed vegetation, which is decreased in Orissa and Tamil Nadu and increased in Andhra Pradesh and Bangladesh. It is demonstrated that by preparing risk zonation map, risk assessment can be done.


2019 ◽  
Vol 91 (4) ◽  
pp. 648-653
Author(s):  
Aleksandrs Urbahs ◽  
Vladislavs Zavtkevics

Purpose This paper aims to analyze the application of remotely piloted aircraft (RPA) for remote oil spill sensing. Design/methodology/approach This paper is an analysis of RPA strong points. Findings To increase the accuracy and eliminate potentially false contamination detection, which can be caused by external factors, an oil thickness measurement algorithm is used with the help of the multispectral imaging that provides high accuracy and is versatile for any areas of water and various meteorological and atmospheric conditions. Research limitations/implications SWOT analysis of implementation of RPA for remote sensing of oil spills. Practical implications The use of RPA will improve the remote sensing of oil spills. Social implications The concept of oil spills monitoring needs to be developed for quality data collection, oil pollution control and emergency response. Originality/value The research covers the development of a method and design of a device intended for taking samples and determining the presence of oil contamination in an aquatorium area; the procedure includes taking a sample from the water surface, preparing it for transportation and delivering the sample to a designated location by using the RPA. The objective is to carry out the analysis of remote oil spill sensing using RPA. The RPA provides a reliable sensing of oil pollution with significant advantages over other existing methods. The objective is to analyze the use of RPA employing all of their strong points. In this paper, technical aspects of sensors are analyzed, as well as their advantages and limitations.


Geosphere ◽  
2019 ◽  
Vol 15 (4) ◽  
pp. 1393-1408 ◽  
Author(s):  
Reuben J. Hansman ◽  
Uwe Ring

AbstractGeological field mapping is a vital first step in understanding geological processes. During the 20th century, mapping was revolutionized through advances in remote sensing technology. With the recent availability of low-cost remotely piloted aircraft (RPA), field geologists now routinely carry out aerial imaging without the need to use satellite, helicopter, or airplane systems. RPA photographs are processed by photo-based three-dimensional (3-D) reconstruction software, which uses structure-from-motion and multi-view stereo algorithms to create an ultra-high-resolution, 3-D point cloud of a region or target outcrop. These point clouds are analyzed to extract the orientation of geological structures and strata, and are also used to create digital elevation models and photorealistic 3-D models. However, this technique has only recently been used for structural mapping. Here, we outline a workflow starting with RPA data acquisition, followed by photo-based 3-D reconstruction, and ending with a 3-D geological model. The Jabal Hafit anticline in the United Arab Emirates was selected to demonstrate this workflow. At this anticline, outcrop exposure is excellent and the terrain is challenging to navigate due to areas of high relief. This makes for an ideal RPA mapping site and provides a good indication of how practical this method may be for the field geologist. Results confirm that RPA photo-based 3-D reconstruction mapping is an accurate and cost-efficient remote sensing method for geological mapping.


Sign in / Sign up

Export Citation Format

Share Document