MiR490's diagnostic capacity was demonstrated in various cancer kinds and diseases, adding to its clinical value

2021 ◽  
Author(s):  
Moataz Dowaidar

This miR‐490 review first illustrates its association with various clinical malignancies and other diseases. Although in various malignancies miR‐490's activities, regulatory mechanisms and targets were revealed, its significance to other illnesses is beginning to be studied. Note that miR‐490 levels are regulated at different levels by transcription factors, epigenetic factors, and ncRNAs, revealing complicated interplay between these components. A system approach that incorporates miR‐490 and its regulatory components will surely help detect critical miR‐490 hub connections that might affect tumor initiation/progression. Furthermore, a number of pharmacological and environmental variables known to cause disease have also been shown to alter miR‐490 levels, showing miR‐490's significant pathogenesis involvement. The fact that miR‐490 levels are strictly regulated and abnormal miR‐490 levels are reported in many cancer types and diseases highlights miR‐490's significance in controlling cell homeostasis.Due to their increased stability, miRNAs are developed as diagnostic agents. MiR‐490's diagnostic capacity was demonstrated in various cancer kinds and diseases, adding to its clinical value. The potential of miR‐490 as a non-invasive biomarker might possibly be studied by measuring patient serum/saliva/urine levels in tissues or body fluids. Furthermore, miR‐490's demonstrated ability to stratify healthy tissue tumor samples may aid establishing molecular diagnostic tools. In most circumstances, miR‐490's association with improved prognosis is also fascinating. This extra clinical importance makes miR‐490 appropriate for molecular therapy. In most cancer types where miR‐490 has been functionally identified, miR‐490 has been found to be a miRNA tumor suppressor that inhibits several cancer hallmarks by directly controlling oncogenic targets and pathways. In practical practice, a therapy regime using miR‐490 tissue alteration based on rapidly evolving targeted delivery methods may be on the horizon. Nevertheless, further in vivo investigations must be conducted using genetically changed mice models. Although miR‐490 was not yet clinically examined for its therapeutic potential, in vitro and in vivo preclinical experiments revealed enormous promise in translating miR‐490 as a novel therapeutic target. miR‐490 appears as a novel candidate miRNA with significant cancer diagnosis and therapy with its prognostic and diagnostic capabilities. Therefore, miR‐490 might serve as a novel weapon in the current anti-cancer treatment arsenal.

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Alessio Cardinale ◽  
Silvia Biocca

Prion diseases or transmissible spongiform encephalopathies (TSE) are a group of neurodegenerative and infectious disorders characterized by the conversion of a normal cellular protein PrPCinto a pathological abnormally folded form, termed PrPSc. There are neither available therapies nor diagnostic tools for an early identification of individuals affected by these diseases. New gene-based antibody strategies are emerging as valuable therapeutic tools. Among these, intrabodies are chimeric molecules composed by recombinant antibody fragments fused to intracellular trafficking sequences, aimed at inhibiting,in vivo, the function of specific therapeutic targets. The advantage of intrabodies is that they can be selected against a precise epitope of target proteins, including protein-protein interaction sites and cytotoxic conformers (i.e., oligomeric and fibrillar assemblies). Herein, we address and discussin vitroandin vivoapplications of intrabodies in prion diseases, focussing on their therapeutic potential.


2021 ◽  
Vol 21 (2) ◽  
pp. 878-885
Author(s):  
Li Liu ◽  
Tingting Shen ◽  
Hongfang Liu ◽  
Gen Zhang ◽  
Yongfu Shao

The multifunctional nano-carrier system can simultaneously achieve multiple functions such as diagnostic imaging, targeted delivery of anti-tumor drugs, and combined therapy. Application potential Fe3O4 magnetic nanoparticles have the characteristics of low toxicity, superparamagnetism and good photothermal properties. Therefore, a multifunctional magnetic nanocarrier with both magnetic targeting and photothermal properties can be prepared by surface modification of Fe3O4 o DOX is an anti-tumor drug widely used in clinical treatment, and its severe toxic and side effects greatly limit its application. In this paper, a temperature-sensitive magnetic nanocarrier was first constructed and proved to have good superparamagnetism, photothermal properties, and biocom-patibility Then, Fe3O4-Azo-DOX drug-loaded nanoparticles were constructed by covalently bonding DOX. The prepared Fe3O4-Azo-DOX nanoparticles have high stability, sensitive photothermal response and low toxicity. Finally, Fe3O4-Azo-DOX was applied to the study of combined photother-motherapy and chemotherapy in vitro and in vivo. Based on Fe3O4 nanoparticles, a temperature-sensitive Fe3O4-Azo nanocarrier was constructed and its related properties were characterized. Furthermore, anthracycline nanodrugs were used in chemotherapy of breast cancer patients, and their effects were analyzed according to echocardiography parameter change. The results show that Fe3O4-Azo nanoparticles have a good photothermal heating effect. MCF-7 breast cancer cells were selected as a model to investigate the cytotoxicity of Fe3O4-Azo. The results proved that they have excellent biocompatibility and can be used as drug carriers. A Fe3O4-Azo nanocarrier was used to load DOX to construct a NIR-responsive nano-drug delivery system. By studying the NIR controlled release of Fe3O4-Azo-DOX under different pH conditions, it can be seen that it has NIR-responsive release function and the best release effect at pH 5.7. It was found that LVEF, LVFS, and E/A were significantly lower after chemotherapy than before (P < 0.05), which had a certain clinical value in cardiotoxicity The in vitro antitumor effect of Fe3O4-Azo-DOX was studied, and the results showed that the combined effect of photothermal-chemotherapy was significantly better than the photothermal treatment based on Fe3O4-Azo carrier alone and the chemotherapy based on free DOX alone.


2014 ◽  
Vol 95 (1) ◽  
pp. 86-90
Author(s):  
O S Kalinina ◽  
A U Ziganshin

P2 receptors are detected in different tissues and organs, which makes them a potential target of pharmacological action. A number of studies confirming the maturity of purinergic theory are currently published. Literature review focuses on P2 receptors characteristics, their main current agonists and antagonists, as well as on the possibilities of pharmacological action on these receptors. The most important studies addressing new chemical compounds important for studying P2 receptors and also compounds with potential for medical use are analyzed. Data on current successes of P2 receptors pharmacology and introduction of P2Y receptors antagonists into clinical practice are presented. Over the last decades a certain progress was observed in studying P2 receptors agonists and antagonists. There is a growing interest to pathophysiology and therapeutic potential of purinergic neurotransmission. Nevertheless, there is a need for developing new compounds acting selectively to these receptors both in vivo and in vitro. Despite the large number of P2 receptors agonists and antagonists, most of them have certain drawbacks, including incomplete of non-selective antagonism, or significant effect on ecto-ATPase activity. Thus, studying P2 receptors to find novel compounds acting on these receptors is of significant clinical value. Apparently, this trend of developing novel drugs — P2 receptors agonists and antagonists — is particularly promising.


2021 ◽  
Author(s):  
Pragati Jain ◽  
Arthur G. Roberts

AbstractNano-based delivery systems have greatly enhanced our ability to administer and target drugs and macromolecules to their therapeutic targets. Oligonucleotide drugs have great therapeutic potential but have off-target effects and stability issues, so they are often encapsulated in functionalized vesicles with targeting ligands such as antibodies (Ab). Herein, we describe a novel, scalable and straightforward approach to produce functionalized vesicles called the “Functionalized Lipid Insertion Method.” This method differs significantly from an older approach referred to as the “Detergent-Dialysis Method.” The older method requires excess detergent and extensive dialysis over many hours to produce the functionalized vesicles. With the “Functionalized Lipid Insertion Method,” only the functionalized lipid is detergent-solubilized during the formation of the functionalized vesicle. The approach reduces the dialysis time, keeps the vesicle intact, and orients the functionalized lipid to improve targeting compared to the older method. The dynamic light scattering (DLS) technique demonstrated that vesicle size is sensitive to the initial detergent-solubilized component mixture by the older method. In contrast, functionalized vesicle size increases are consistent with functionalized lipid insertion into the vesicle. In vitro, functionalized vesicles using our approach are able to deliver oligonucleotides selectively and can functionally affect liver cancer HepG2 cells. Functionalized vesicles produced by this method can also achieve targeted delivery of oligonucleotides in mice without inducing a significant immune response through cytokine production or showing physical signs of an immune response. The industrial and therapeutic significance and implications of functionalized vesicles produced by our method are also discussed.


2018 ◽  
Vol 24 (15) ◽  
pp. 1639-1651 ◽  
Author(s):  
Xian-ling Qian ◽  
Jun Li ◽  
Ran Wei ◽  
Hui Lin ◽  
Li-xia Xiong

Background: Anticancer chemotherapeutics have a lot of problems via conventional Drug Delivery Systems (DDSs), including non-specificity, burst release, severe side-effects, and damage to normal cells. Owing to its potential to circumventing these problems, nanotechnology has gained increasing attention in targeted tumor therapy. Chemotherapeutic drugs or genes encapsulated in nanoparticles could be used to target therapies to the tumor site in three ways: “passive”, “active”, and “smart” targeting. Objective: To summarize the mechanisms of various internal and external “smart” stimulating factors on the basis of findings from in vivo and in vitro studies. Method: A thorough search of PubMed was conducted in order to identify the majority of trials, studies and novel articles related to the subject. Results: Activated by internal triggering factors (pH, redox, enzyme, hypoxia, etc.) or external triggering factors (temperature, light of different wavelengths, ultrasound, magnetic fields, etc.), “smart” DDSs exhibit targeted delivery to the tumor site, and controlled release of chemotherapeutic drugs or genes. Conclusion: In this review article, we summarize and classify the internal and external triggering mechanism of “smart” nanoparticle-based DDSs in targeted tumor therapy, and the most recent research advances are illustrated for better understanding.


2019 ◽  
Vol 24 (39) ◽  
pp. 4626-4638 ◽  
Author(s):  
Reyhaneh Moradi-Marjaneh ◽  
Seyed M. Hassanian ◽  
Farzad Rahmani ◽  
Seyed H. Aghaee-Bakhtiari ◽  
Amir Avan ◽  
...  

Background: Colorectal cancer (CRC) is one of the most common causes of cancer-associated mortality in the world. Anti-tumor effect of curcumin has been shown in different cancers; however, the therapeutic potential of novel phytosomal curcumin, as well as the underlying molecular mechanism in CRC, has not yet been explored. Methods: The anti-proliferative, anti-migratory and apoptotic activity of phytosomal curcumin in CT26 cells was assessed by MTT assay, wound healing assay and Flow cytometry, respectively. Phytosomal curcumin was also tested for its in-vivo activity in a xenograft mouse model of CRC. In addition, oxidant/antioxidant activity was examined by DCFH-DA assay in vitro, measurement of malondialdehyde (MDA), Thiol and superoxidedismutase (SOD) and catalase (CAT) activity and also evaluation of expression levels of Nrf2 and GCLM by qRT-PCR in tumor tissues. In addition, the effect of phytosomal curcumin on angiogenesis was assessed by the measurement of VEGF-A and VEGFR-1 and VEGF signaling regulatory microRNAs (miRNAs) in tumor tissue. Results: Phytosomal curcumin exerts anti-proliferative, anti-migratory and apoptotic activity in-vitro. It also decreases tumor growth and augmented 5-fluorouracil (5-FU) anti-tumor effect in-vivo. In addition, our data showed that induction of oxidative stress and inhibition of angiogenesis through modulation of VEGF signaling regulatory miRNAs might be underlying mechanisms by which phytosomal curcumin exerted its antitumor effect. Conclusion: Our data confirmed this notion that phytosomal curcumin administrates anticancer effects and can be used as a complementary treatment in clinical settings.


2020 ◽  
Vol 26 ◽  
Author(s):  
Kondeti Ramudu Shanmugam ◽  
Bhasha Shanmugam ◽  
Gangigunta Venkatasubbaiah ◽  
Sahukari Ravi ◽  
Kesireddy Sathyavelu Reddy

Background : Diabetes is a major public health problem in the world. It affects each and every part of the human body and also leads to organ failure. Hence, great progress made in the field of herbal medicine and diabetic research. Objectives: Our review will focus on the effect of bioactive compounds of medicinal plants which are used to treat diabetes in India and other countries. Methods: Information regarding diabetes, oxidative stress, medicinal plants and bioactive compounds were collected from different search engines like Science direct, Springer, Wiley online library, Taylor and francis, Bentham Science, Pubmed and Google scholar. Data was analyzed and summarized in the review. Results and Conclusion: Anti-diabetic drugs that are in use have many side effects on vital organs like heart, liver, kidney and brain. There is an urgent need for alternative medicine to treat diabetes and their disorders. In India and other countries herbal medicine was used to treat diabetes. Many herbal plants have antidiabetic effects. The plants like ginger, phyllanthus, curcumin, aswagandha, aloe, hibiscus and curcuma showed significant anti-hyperglycemic activities in experimental models and humans. The bioactive compounds like Allicin, azadirachtin, cajanin, curcumin, querceitin, gingerol possesses anti-diabetic, antioxidant and other pharmacological properties. This review focuses on the role of bioactive compounds of medicinal plants in prevention and management of diabetes. Conclusion: Moreover, our review suggests that bioactive compounds have the potential therapeutic potential against diabetes. However, further in vitro and in vivo studies are needed to validate these findings.


Biology ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 610
Author(s):  
Robin Park ◽  
Andrew L. Coveler ◽  
Ludimila Cavalcante ◽  
Anwaar Saeed

Glycogen synthase kinase-3 beta is a ubiquitously and constitutively expressed molecule with pleiotropic function. It acts as a protooncogene in the development of several solid tumors including pancreatic cancer through its involvement in various cellular processes including cell proliferation, survival, invasion and metastasis, as well as autophagy. Furthermore, the level of aberrant glycogen synthase kinase-3 beta expression in the nucleus is inversely correlated with tumor differentiation and survival in both in vitro and in vivo models of pancreatic cancer. Small molecule inhibitors of glycogen synthase kinase-3 beta have demonstrated therapeutic potential in pre-clinical models and are currently being evaluated in early phase clinical trials involving pancreatic cancer patients with interim results showing favorable results. Moreover, recent studies support a rationale for the combination of glycogen synthase kinase-3 beta inhibitors with chemotherapy and immunotherapy, warranting the evaluation of novel combination regimens in the future.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 498
Author(s):  
Mariaevelina Alfieri ◽  
Antonietta Leone ◽  
Alfredo Ambrosone

Plants produce different types of nano and micro-sized vesicles. Observed for the first time in the 60s, plant nano and microvesicles (PDVs) and their biological role have been inexplicably under investigated for a long time. Proteomic and metabolomic approaches revealed that PDVs carry numerous proteins with antifungal and antimicrobial activity, as well as bioactive metabolites with high pharmaceutical interest. PDVs have also been shown to be also involved in the intercellular transfer of small non-coding RNAs such as microRNAs, suggesting fascinating mechanisms of long-distance gene regulation and horizontal transfer of regulatory RNAs and inter-kingdom communications. High loading capacity, intrinsic biological activities, biocompatibility, and easy permeabilization in cell compartments make plant-derived vesicles excellent natural or bioengineered nanotools for biomedical applications. Growing evidence indicates that PDVs may exert anti-inflammatory, anti-oxidant, and anticancer activities in different in vitro and in vivo models. In addition, clinical trials are currently in progress to test the effectiveness of plant EVs in reducing insulin resistance and in preventing side effects of chemotherapy treatments. In this review, we concisely introduce PDVs, discuss shortly their most important biological and physiological roles in plants and provide clues on the use and the bioengineering of plant nano and microvesicles to develop innovative therapeutic tools in nanomedicine, able to encompass the current drawbacks in the delivery systems in nutraceutical and pharmaceutical technology. Finally, we predict that the advent of intense research efforts on PDVs may disclose new frontiers in plant biotechnology applied to nanomedicine.


Sign in / Sign up

Export Citation Format

Share Document