scholarly journals Electric Water Heater Energy Consumption Determination Using Outlet Temperature and Volumetric Estimation

2019 ◽  
Author(s):  
Philip Nel ◽  
MJ Booysen ◽  
Brink van der Merwe

This paper presents the use of outlet temperature and water meter data as inputs to a physical model of a domestic electric water heater (EWH) for estimating the energy consumption for various control settings. Four sets of actual household data, consisting of at least 7 consecutive days each, is used to determine the accuracy of the energy consumption estimates in comparison to measured energy consumption. Both the outlet temperature and water meter data inputs used were able to estimate the total energy input with an error of less than 10 percent for 3 of the 4 datasets considered. Additionally, both methods are also implemented as a smartphone application that can be used to obtain input from users, as well as provide instantaneous feedback on the impact of control changes.

Buildings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 82
Author(s):  
Luciana Debs ◽  
Jamie Metzinger

The present research analyzes the impact of nine factors related to household demographics, building equipment, and building characteristics towards a home’s total energy consumption while controlling for climate. To do this, we have surveyed single-family owned houses from the 2015 Residential Energy Consumption Survey (RECS) dataset and controlled the analysis by Building America climate zones. Our findings are based on descriptive statistics and multiple regression models, and show that for a median-sized home in three of the five climate zones, heating equipment is still the main contributor to a household’s total energy consumed, followed by home size. Social-economic factors and building age were found relevant for some regions, but often contributed less than size and heating equipment towards total energy consumption. Water heater and education were not found to be statistically relevant in any of the regions. Finally, solar power was only found to be a significant factor in one of the regions, positively contributing to a home’s total energy consumed. These findings are helpful for policymakers to evaluate the specificities of climate regions in their jurisdiction, especially guiding homeowners towards more energy-efficient heating equipment and home configurations, such as reduced size.


2020 ◽  
Vol 15 (3) ◽  
pp. 373-381 ◽  
Author(s):  
Cafer Kizilors ◽  
Devrim Aydin

Abstract In domestic buildings, water is generally heated by an immersion type electric water heater, equipped with a thermostat as one unit, which is fitted at the bottom of the tank. Despite these systems are driven by electric energy, which is not favorable compared to direct solar water heaters, they are still widely used due to the practicality and low installation costs. In current use of electric water heaters, thermostat position and water set-point temperature are crucial and these parameters should be optimized for efficient and economic use of such systems. In this study, the impact of placing the thermostat at three different elevations; namely near the bottom, in the middle and near the top of an EWH is experimentally investigated. In addition, the effect of temperature setting of the thermostat near the bottom of the tank, on the performance of the EWH is experimentally investigated. Data were obtained for 5 L/min discharging rate of the heated water. The discharge efficiencies are found to be higher for the thermostat position at the bottom, while the discharge efficiencies for thermostat positions in the middle and near the top are very close but lower than that of the one near the bottom.


2020 ◽  
pp. 50-64
Author(s):  
Kuladeep Kumar Sadevi ◽  
Avlokita Agrawal

With the rise in awareness of energy efficient buildings and adoption of mandatory energy conservation codes across the globe, significant change is being observed in the way the buildings are designed. With the launch of Energy Conservation Building Code (ECBC) in India, climate responsive designs and passive cooling techniques are being explored increasingly in building designs. Of all the building envelope components, roof surface has been identified as the most significant with respect to the heat gain due to the incident solar radiation on buildings, especially in tropical climatic conditions. Since ECBC specifies stringent U-Values for roof assembly, use of insulating materials is becoming popular. Along with insulation, the shading of the roof is also observed to be an important strategy for improving thermal performance of the building, especially in Warm and humid climatic conditions. This study intends to assess the impact of roof shading on building’s energy performance in comparison to that of exposed roof with insulation. A typical office building with specific geometry and schedules has been identified as base case model for this study. This building is simulated using energy modelling software ‘Design Builder’ with base case parameters as prescribed in ECBC. Further, the same building has been simulated parametrically adjusting the amount of roof insulation and roof shading simultaneously. The overall energy consumption and the envelope performance of the top floor are extracted for analysis. The results indicate that the roof shading is an effective passive cooling strategy for both naturally ventilated and air conditioned buildings in Warm and humid climates of India. It is also observed that a fully shaded roof outperforms the insulated roof as per ECBC prescription. Provision of shading over roof reduces the annual energy consumption of building in case of both insulated and uninsulated roofs. However, the impact is higher for uninsulated roofs (U-Value of 3.933 W/m2K), being 4.18% as compared to 0.59% for insulated roofs (U-Value of 0.33 W/m2K).While the general assumption is that roof insulation helps in reducing the energy consumption in tropical buildings, it is observed to be the other way when insulation is provided with roof shading. It is due to restricted heat loss during night.


2016 ◽  
Vol 21 (1) ◽  
pp. 9-20
Author(s):  
Ersalina Tang

The purpose of this study is to analyze the impact of Foreign Direct Investment, Gross Domestic Product, Energy Consumption, Electric Consumption, and Meat Consumption on CO2 emissions of 41 countries in the world using panel data from 1999 to 2013. After analyzing 41 countries in the world data, furthermore 17 countries in Asia was analyzed with the same period. This study utilized quantitative approach with Ordinary Least Square (OLS) regression method. The results of 41 countries in the world data indicates that Foreign Direct Investment, Gross Domestic Product, Energy Consumption, and Meat Consumption significantlyaffect Environmental Qualities which measured by CO2 emissions. Whilst the results of 17 countries in Asia data implies that Foreign Direct Investment, Energy Consumption, and Electric Consumption significantlyaffect Environmental Qualities. However, Gross Domestic Product and Meat Consumption does not affect Environmental Qualities.


The demand for energy consumption requires efficient financial development in terms of bank credit. Therefore, this study examines the nexus between Financial Development, Economic Growth, Energy Prices and Energy Consumption in India, utilizing Vector Error Correction Model (VECM) technique to determine the nature of short and long term relationships from 2010 to 2019. The estimation of results indicates that a one percent increase in bank credits to private sector results in 0.10 percent increase in energy consumption and 0.28 percent increase in energy consumption responses to 1 percent increase in economic growth. It is also observed that the impact of energy price proxied by consumer price index is statistically significant with a negative sign indicating the consistency with the theory.


Author(s):  
Lion D. Comfort ◽  
Marian C. Neidert ◽  
Oliver Bozinov ◽  
Luca Regli ◽  
Martin N. Stienen

Abstract Background Complications after neurosurgical operations can have severe impact on patient well-being, which is poorly reflected by current grading systems. The objective of this work was to develop and conduct a feasibility study of a new smartphone application that allows for the longitudinal assessment of postoperative well-being and complications. Methods We developed a smartphone application “Post OP Tracker” according to requirements from clinical experience and tested it on simulated patients. Participants received regular notifications through the app, inquiring them about their well-being and complications that had to be answered according to their assigned scenarios. After a 12-week period, subjects answered a questionnaire about the app’s functionality, user-friendliness, and acceptability. Results A total of 13 participants (mean age 34.8, range 24–68 years, 4 (30.8%) female) volunteered in this feasibility study. Most of them had a professional background in either health care or software development. All participants downloaded, installed, and applied the app for an average of 12.9 weeks. On a scale of 1 (worst) to 4 (best), the app was rated on average 3.6 in overall satisfaction and 3.8 in acceptance. The design achieved a somewhat favorable score of 3.1. One participant (7.7%) reported major technical issues. The gathered patient data can be used to graphically display the simulated outcome and assess the impact of postoperative complications. Conclusions This study suggests the feasibility to longitudinally gather postoperative data on subjective well-being through a smartphone application. Among potential patients, our application indicated to be functional, user-friendly, and well accepted. Using this app-based approach, further studies will enable us to classify postoperative complications according to their impact on the patient’s well-being.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Batyrbek Alimkhanuly ◽  
Joon Sohn ◽  
Ik-Joon Chang ◽  
Seunghyun Lee

AbstractRecent studies on neural network quantization have demonstrated a beneficial compromise between accuracy, computation rate, and architecture size. Implementing a 3D Vertical RRAM (VRRAM) array accompanied by device scaling may further improve such networks’ density and energy consumption. Individual device design, optimized interconnects, and careful material selection are key factors determining the overall computation performance. In this work, the impact of replacing conventional devices with microfabricated, graphene-based VRRAM is investigated for circuit and algorithmic levels. By exploiting a sub-nm thin 2D material, the VRRAM array demonstrates an improved read/write margins and read inaccuracy level for the weighted-sum procedure. Moreover, energy consumption is significantly reduced in array programming operations. Finally, an XNOR logic-inspired architecture designed to integrate 1-bit ternary precision synaptic weights into graphene-based VRRAM is introduced. Simulations on VRRAM with metal and graphene word-planes demonstrate 83.5 and 94.1% recognition accuracy, respectively, denoting the importance of material innovation in neuromorphic computing.


Sign in / Sign up

Export Citation Format

Share Document