scholarly journals Integrated Sensing and Earthmoving Vehicle for Lunar Landing Pad Construction

2019 ◽  
Author(s):  
Volker Nannen ◽  
Damian Bover ◽  
Dieter Zöbel

Reducing the forces necessary to construct projects like landing pads and blast walls is possibly one of the major drivers in reducing the costs of establishing lunar settlements. The interlock drive system generates traction by penetrating articulated spikes into the ground and by using the natural strength of the ground for traction. The spikes develop a high pull to weight ratio and promise good mobility in soft, rocky and steep terrain, energy-efficient operation, and their design is relatively simple. By penetrating the ground at regular intervals, the spikes also enable the in-situ measurement of a variety of ground properties, including penetration resistance, temperature, and pH. Here we present a concept for a light lunar bulldozer with interlocking spikes that uses a blade and a ripper to loosen and move soil over short distances, that maps ground properties in situ and that uses this information to construct landing pads and blast walls, and to otherwise interact with the ground in a targeted and efficient manner. Trials on Mediterranean soil have shown that this concept promises to satisfy many of the basic requirements expected of a lunar excavator. To better predict performance in a lunar or Martian environment, experiments on relevant soil simulants are needed.

Akustika ◽  
2020 ◽  
pp. 2-7
Author(s):  
Marián Flimel

Energy-efficient buildings utilise the potential of renewable sources, among which heat pumps hold an important position. As this technology has a secondary effect on the environment through its noise immission, locations of outdoor units in the exterior should be subjected to the assessment. The present article deals with the options of placing heat pumps in the exterior and the placement assessment methods. The noise burden identification through the assessment of the time exposure is presented in the example of an in situ measurement.


Author(s):  
Alexander D. Pisarev

This article studies the implementation of some well-known principles of information work of biological systems in the input unit of the neuroprocessor, including spike coding of information used in models of neural networks of the latest generation.<br> The development of modern neural network IT gives rise to a number of urgent tasks at the junction of several scientific disciplines. One of them is to create a hardware platform&nbsp;— a neuroprocessor for energy-efficient operation of neural networks. Recently, the development of nanotechnology of the main units of the neuroprocessor relies on combined memristor super-large logical and storage matrices. The matrix topology is built on the principle of maximum integration of programmable links between nodes. This article describes a method for implementing biomorphic neural functionality based on programmable links of a highly integrated 3D logic matrix.<br> This paper focuses on the problem of achieving energy efficiency of the hardware used to model neural networks. The main part analyzes the known facts of the principles of information transfer and processing in biological systems from the point of view of their implementation in the input unit of the neuroprocessor. The author deals with the scheme of an electronic neuron implemented based on elements of a 3D logical matrix. A pulsed method of encoding input information is presented, which most realistically reflects the principle of operation of a sensory biological neural system. The model of an electronic neuron for selecting ranges of technological parameters in a real 3D logic matrix scheme is analyzed. The implementation of disjunctively normal forms is shown, using the logic function in the input unit of a neuroprocessor as an example. The results of modeling fragments of electric circuits with memristors of a 3D logical matrix in programming mode are presented.<br> The author concludes that biomorphic pulse coding of standard digital signals allows achieving a high degree of energy efficiency of the logic elements of the neuroprocessor by reducing the number of valve operations. Energy efficiency makes it possible to overcome the thermal limitation of the scalable technology of three-dimensional layout of elements in memristor crossbars.


2021 ◽  
Vol 40 (5) ◽  
pp. 8727-8740
Author(s):  
Rajvir Singh ◽  
C. Rama Krishna ◽  
Rajnish Sharma ◽  
Renu Vig

Dynamic and frequent re-clustering of nodes along with data aggregation is used to achieve energy-efficient operation in wireless sensor networks. But dynamic cluster formation supports data aggregation only when clusters can be formed using any set of nodes that lie in close proximity to each other. Frequent re-clustering makes network management difficult and adversely affects the use of energy efficient TDMA-based scheduling for data collection within the clusters. To circumvent these issues, a centralized Fixed-Cluster Architecture (FCA) has been proposed in this paper. The proposed scheme leads to a simplified network implementation for smart spaces where it makes more sense to aggregate data that belongs to a cluster of sensors located within the confines of a designated area. A comparative study is done with dynamic clusters formed with a distributive Low Energy Adaptive Clustering Hierarchy (LEACH) and a centralized Harmonic Search Algorithm (HSA). Using uniform cluster size for FCA, the results show that it utilizes the available energy efficiently by providing stability period values that are 56% and 41% more as compared to LEACH and HSA respectively.


2015 ◽  
Vol 11 (8) ◽  
pp. 108210 ◽  
Author(s):  
Yong-Hoon Choi ◽  
Jungerl Lee ◽  
Juhoon Back ◽  
Suwon Park ◽  
Young-uk Chung ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Dawei Zhang ◽  
Lihong Zhang ◽  
Bingzhe Wang ◽  
Guangzhe Piao

Stable lyotropic chiral nematic liquid crystals (N*-LCs) of cellulose nanocrystals (CNs) were prepared via hydrolysis using sulfuric acid. The lyotropic N*-LCs were used as an asymmetric reaction field to synthesize polyaniline (PANI) onto CNs by in situ polymerization. As a primary step, we examined the mesophase transition of the N*-LCs of CNs suspension before and after in situ polymerization of aniline (ANI) by polarizing optical microscopy. The structure of nanocomposites of PANI/CNs was investigated at a microscopic level using Fourier transform infrared spectroscopy and X-ray diffraction. Influence of the CNs-to-ANI ratio on the morphology of the nanocomposites was also investigated at macroscopic level by scanning electron and transmission electron microscopies. It is found that the weight ratio of CNs to aniline in the suspension significantly influenced the size of the PANI particles and interaction between CNs and PANI. Moreover, electrical properties of the obtained PANI/CNs films were studied using standard four-probe technique. It is expected that the lyotropic N*-LCs of CNs might be available for an asymmetric reaction field to produce novel composites of conjugated materials.


Sign in / Sign up

Export Citation Format

Share Document